MPRI 2–2 Models of programming languages: domains, categories, games

Problem 4: The Eilenberg-Moore of the relational model of LL

Thomas Ehrhard

January 5, 2025

The goal of this problem is to study the Eilenberg Moore category $\mathbf{Rel}^!$ of \mathbf{Rel} , the relational model of LL.

Let P be an object of **Rel**[!] (the category of coalgebras of !_). Remember that $P = (\underline{P}, \mathbf{h}_P)$ where \underline{P} is an object of **Rel** (a set) and $\mathbf{h}_P \in \mathbf{Rel}(\underline{P}, \underline{P})$ satisfies the following commutations:

$$\begin{array}{cccc} \underline{P} & \xrightarrow{\mathbf{h}_{P}} & \underline{!P} & & \underline{P} & \xrightarrow{\mathbf{h}_{P}} & \underline{!P} \\ & & & & & \\ \underline{P} & & & & & \\ & & & & \\ \underline{P} & & & & & \\ \end{array} \begin{array}{c} \underline{P} & & & & \\ \underline{P} & & & & \\ \underline{P} & & & & \\ \end{array} \begin{array}{c} \underline{P} & & & & \\ \underline{P} & & & & \\ \underline{P} & & & & \\ \end{array} \begin{array}{c} \underline{P} & & & \\ \underline{P} & & \\$$

- 4. (a) Check that these commutations mean:
 - for all $a, a' \in \underline{P}$, one has $(a, [a']) \in h_P$ iff a = a'
 - and for all $a \in \underline{P}$ and $m_1, \ldots, m_k \in \underline{P}$, one has $(a, m_1 + \cdots + m_k) \in \mathsf{h}_P$ iff there are $a_1, \ldots, a_k \in \underline{P}$ such that $(a, [a_1, \ldots, a_k]) \in \mathsf{h}_P$ and $(a_i, m_i) \in \mathsf{h}_P$ for $i = 1, \ldots, k$.

Intuitively, $(a, [a_1, \ldots, a_k])$ means that a can be decomposed into " $a_1 + \cdots + a_k$ " where the "+" is the decomposition operation associated with P.

(b) Prove that if P is an object of **Re**¹ such that $\underline{P} \neq \emptyset$ then there is at least one element e of \underline{P} such that $(e, []) \in h_P$. Explain why such an e could be called a "coneutral element of P".

If P and Q are objects of **Rel**[!], remember that an $f \in \mathbf{Rel}^{!}(P,Q)$ (morphism of coalgebras) is an $f \in \mathbf{Rel}(\underline{P}, Q)$ such that the following diagram commutes

$$\begin{array}{ccc}
\underline{P} & \xrightarrow{f} & \underline{Q} \\
 & & \downarrow & \downarrow \\
 & & \downarrow & \downarrow \\
 & & \downarrow \\
 & \underline{P} & \xrightarrow{!f} & !Q
\end{array}$$

- (c) Check that this commutation means that for all $a \in \underline{P}$ and $b_1, \ldots, b_k \in \underline{Q}$, the two following properties are equivalent
 - there is $b \in Q$ such that $(a, b) \in f$ and $(b, [b_1, \ldots, b_k]) \in h_Q$
 - there are $a_1, \ldots, a_k \in \underline{P}$ such that $(a, [a_1, \ldots, a_k]) \in \mathsf{h}_P$ and $(a_i, b_i) \in f$ for $i = 1, \ldots, k$.

The object 1 of **Rel** (the set $\{*\}$) can be equipped with a structure of coalgebra (still denoted 1) with $h_1 = \{(*, k[*]) \mid k \in \mathbb{N}\}$.

(d) Prove that the elements of $\operatorname{\mathbf{Rel}}^!(1, P)$ can be identified with the subsets x of \underline{P} such that, for all $a_1, \ldots, a_k \in \underline{P}$, one has $a_1, \ldots, a_k \in x$ iff there exists $a \in x$ such that $(a, [a_1, \ldots, a_k]) \in \mathsf{h}_P$. We call values of P these subsets of \underline{P} and denote as $\mathsf{val}(P)$ the set of these values.

Prove that an element of val(P) is never empty and that val(P), equipped with inclusion, is a complete partially ordered set (cpo), that is: the union of a set of values which is directed (with respect to \subseteq) is still a value.

Remember that if E is an object of **Rel** then $(!E, \operatorname{dig}_E)$ is an object of **Rel**! (the free coalgebra generated by E, that we can identify with an object of the Kleisli category **Rel**!).

(e) Exhibit an order isomorphism between the cpos $val(!E, dig_E)$ and $\mathcal{P}(E)$ (both ordered by set inclusion).

For any categorical model \mathcal{L} of LL, the category $\mathcal{L}^{!}$ is cartesian; we specialize the corresponding general definitions to the case $\mathcal{L} = \mathbf{Rel}$. The product of P_1 and P_2 is $P_1 \otimes P_2$, the coalgebra defined by $P_1 \otimes P_2 = P_1 \otimes P_2$ and $\mathsf{h}_{P_1 \otimes P_2}$ is the following composition of morphisms in **Rel**:

$$\underline{P_1} \otimes \underline{P_2} \xrightarrow{\quad \mathbf{h}_{P_1} \otimes \mathbf{h}_{P_2}} \underline{!P_1} \otimes \underline{!P_2} \xrightarrow{\quad \mu_{\underline{P_1},\underline{P_2}}^2} \underline{!(\underline{P_1} \otimes \underline{P_2})}$$

where $\mu_{E_1,E_2}^2 \in \mathbf{Rel}(!E_1 \otimes !E_2, !(E_1 \otimes E_2))$ is the lax monoidality natural transformation of !_, remember that in **Rel** we have

$$\mu_{E_1,E_2}^2 = \{ (([a_1,\ldots,a_k],[b_1,\ldots,b_k]),[(a_1,b_1),\ldots,(a_k,b_k)]) \mid k \in \mathbb{N} \text{ and } (a_1,b_1),\ldots,(a_k,b_k) \in E_1 \times E_2 \}.$$

Concretely, we have simply that $((a_1, a_2), [(a_1^1, a_2^1), \dots, (a_1^k, a_2^k)]) \in \mathsf{h}_{P_1 \otimes P_2}$ iff $(a_i, [a_i^1, \dots, a_i^k]) \in \mathsf{h}_{P_i}$ for i = 1, 2.

(f) Prove that $P_1 \otimes P_2$, equipped with projections $(\mathsf{pr}_l^{\otimes})_{l=1,2}$ defined by:

$$\mathsf{pr}_1^{\otimes} = \{((a, e), a) \mid a \in \underline{P_1} \text{ and } (e, []) \in \mathsf{h}_{P_2}\},\$$

and similarly for pr_2^{\otimes} , is the cartesian product of P_1 and P_2 in **Rel**[!]. Warning: $\mathcal{L}^!$ is always cartesian when \mathcal{L} is a model of LL; you are not expected to give a general proof of this fact, just a verification that this is true in **Rel**[!].

- (g) Let $(f_l \in \mathbf{Rel}^!(P_l, Q_l))_{l=1,2}$. Prove that the morphism $\langle f_1 \operatorname{pr}_1^{\otimes}, f_2 \operatorname{pr}_2^{\otimes} \rangle^{\otimes} \in \mathbf{Rel}^!(P_1 \otimes P_2, Q_1 \otimes Q_2)$ coincides with $f_1 \otimes f_2$ (which, by definition, belongs to $\mathbf{Rel}(\underline{P_1} \otimes \underline{P_2}, \underline{Q_1} \otimes \underline{Q_2})$).
- (h) Prove that 1 is the terminal object of $\mathbf{Rel}^!$.
- (i) Let $(P_l)_{l \in I}$ be a collection of objects of **Rel**! (*I* is an arbitrary indexing set). Remember that for each $l \in I$ we have an injection morphism

$$\mathsf{in}_l = \{(a, (l, a)) \mid a \in P_l\} \in \mathbf{Rel}(P_l, \bigoplus_{k \in I} P_k)$$

and that for any collection $(t_l \in \mathbf{Rel}(\underline{P}_l, \underline{Q}))$, there is exactly one morphism $t \in \mathbf{Rel}(\bigoplus_{l \in I} \underline{P}_l, h_Q)$ such that $\forall l \in I \ t \ in_l = t_l$, namely

$$t = [t_l]_{l \in I} = \{ ((l, a), b) \mid l \in I \text{ and } (a, b) \in t_l \}$$

In other words, $(\bigoplus_{l \in I} \underline{P_l}, (in_l)_{l \in I})$ is the coproduct of the $\underline{P_l}$'s in **Rel**. Given a multiset $m = [a_1, \ldots, a_k]$ and $l \in I$, we set $l \cdot m = [(l, a_1), \ldots, (l, a_k)]$. Let

$$h = \{((l, a), l \cdot m) \mid l \in I \text{ and } (a, m) \in \mathsf{h}_{P_l}\} \in \mathbf{Rel}(X, !X)$$

where $X = \bigoplus_{l \in I} \underline{P_l}$. Prove that (X, h) is an object of **Rel**[!], for which we will use the notation $\bigoplus_{l \in I} P_l$.

- (j) Exhibit an order isomorphism between the cpo $\mathsf{val}(\bigoplus_{l \in I} P_l)$ and $\bigcup_{l \in I} \{l\} \times \mathsf{val}(P_l)$ ordered as follows: $(l, x) \leq (l', x')$ iff l = l' and $x \subseteq x'$.
- (k) Is it always true that if $x_1, x_2 \in \mathsf{val}(P)$ then $x_1 \cup x_2 \in \mathsf{val}(P)$?

(1) We admit that $(in_l \in \mathbf{Rel}^!(P_l, \oplus_{k \in I} P_k))_{l \in I}$ and that, given $(f_l \in \mathbf{Rel}^!(P_l, Q))_{l \in I}$, one has $([f_l]_{l \in I}) \in \mathbf{Rel}^!(\oplus_{l \in I} P_l, Q)$. The patient reader can check these facts, which show that $(\oplus_{l \in I} P_l, (in_l)_{l \in I})$ is the coproduct of the P_l 's in the category $\mathbf{Rel}^!$.

Let P be an object of $\mathbf{Rel}^!$. Using the universal property of the coproduct, exhibit a morphism $d \in \mathbf{Rel}^!(\bigoplus_{l \in I} (P \otimes P_l), P \otimes (\bigoplus_{l \in I})P_l)$, describe d explicitly and prove that is an iso.

(m) So cartesian products distribute over coproducts in **Rel**[!], prove that the similar property does not hold in **Rel**.