MPRI 2–2 Models of programming languages: domains, categories, games

Problem 3: Linear and stable functions on coherence spaces

Thomas Ehrhard

November 14, 2024

A coherence spaces is a structure $E = (|E|, c_E)$ where c_E is a binary symmetric and reflexive relation on the set |E|. The strict coherence relation is c_E is defined by: $a c_E b$ if $a c_E b$ and $a \neq b$, which is a symmetric and antireflexive relation.

We use Cl(E) for the set of cliques of E, that is $Cl(E) = \{x \subseteq |E| \mid \forall a, a' \in x \ a \supset_E a'\}$. Ordered by inclusion, this is a cpo.

We shall say that a family $(x_i \in \mathsf{Cl}(E))_{i \in I}$ is summable if $\forall i, j \in I$ $i \neq j \Rightarrow x_i \cap x_j = \emptyset$ and $\bigcup_{i \in I} x_i \in \mathsf{Cl}(E)$. When this is the case, we set $\sum_{i \in I} x_i = \bigcup_{i \in I} x_i$. Accordingly, if $x_1, x_2 \in \mathsf{Cl}(E)$ are summable, we write $x_1 + x_2 = x_1 \cup x_2$.

Let E and F be coherence spaces and let $f : Cl(E) \to Cl(F)$. We use the following terminology (warning: Paul-André Melliès may have used another one!).

- f is Scott-continuous if it is increasing, and, for any directed set $D \subseteq Cl(E)$ (remember that this means that $D \neq \emptyset$ and $\forall x_1, x_2 \in D \exists x \in D \ x_1, x_2 \subseteq x$), we have $f(\bigcup D) = \bigcup f(D) = \bigcup \{f(x) \mid x \in D\}$. Since f is increasing, this condition is equivalent to $f(\bigcup D) \subseteq \bigcup f(D)$.
- f is stable if it is Scott-continuous and

$$\forall x_1, x_2 \quad x_1 \cup x_2 \in \mathsf{Cl}(E) \Rightarrow f(x_1 \cap x_2) = f(x_1) \cap f(x_2)$$

that is, since f is increasing:

$$\forall x_1, x_2 \quad x_1 \cup x_2 \in \mathsf{Cl}(E) \Rightarrow f(x_1 \cap x_2) \supseteq f(x_1) \cap f(x_2).$$

• f is linear if it is stable and

$$f(\emptyset) = \emptyset$$

$$\forall x_1, x_2 \quad x_1 \cup x_2 \in \mathsf{Cl}(E) \Rightarrow f(x_1 \cup x_2) = f(x_1) \cup f(x_2).$$

that is, since f is increasing:

$$f(\emptyset) = \emptyset$$

$$\forall x_1, x_2 \quad x_1 \cup x_2 \in \mathsf{Cl}(E) \Rightarrow f(x_1 \cup x_2) \subseteq f(x_1) \cup f(x_2)$$

Remember also that if E and F are coherence spaces, the coherence space $E \multimap F$ is defined by $|E \multimap F| = |E| \times |F|$ and, for $(a,b), (a',b') \in |E \multimap F|$, one has $(a,b) \circ_{E \multimap F} (a',b')$ if:

$$a \simeq_E a' \Rightarrow (b \simeq_F b' \text{ and } (b = b' \Rightarrow a = a')).$$

We define a coherence space \mathbb{D} by $|\mathbb{D}| = \{0, 1\}$ with $0 \sim_{\mathbb{D}} 1$, that is $\mathbb{D} = 1 \& 1$.

We use **Cohs** for the category of coherence spaces and stable functions.

- 3. (a) Let *E* and *F* be coherence spaces and let $f : Cl(E) \to Cl(F)$ be increasing and Scott-continuous. Prove that *f* is linear if and only if it is additive, that is:
 - $f(\emptyset) = \emptyset$
 - and for any $x_1, x_2 \in Cl(E)$, if x_1 and x_2 are summable in Cl(E), then $f(x_1)$ and $f(x_2)$ are summable in Cl(F) and one has $f(x_1 + x_2) = f(x_1) + f(x_2)$.
 - (b) Let $SE = (\mathbb{D} \multimap E)$, prove that there is an order isomorphism

 $Cl(SE) \simeq \{(x, u) \in Cl(E)^2 \mid x \text{ and } u \text{ are summable}\}$ (with the product order).

If $x, u \in Cl(E)$ are summable, we use $\langle\!\langle x, u \rangle\!\rangle$ for the corresponding element of Cl(SE).

- (c) Let $\langle\!\langle x_1, u_1 \rangle\!\rangle, \langle\!\langle x_2, u_2 \rangle\!\rangle \in \mathsf{Cl}(\mathsf{S}E)$, prove that $\langle\!\langle x_1, u_1 \rangle\!\rangle \cap \langle\!\langle x_2, u_2 \rangle\!\rangle = \langle\!\langle x_1 \cap x_2, u_1 \cap u_2 \rangle\!\rangle$. Assuming moreover that $\langle\!\langle x_1, u_1 \rangle\!\rangle \cup \langle\!\langle x_2, u_2 \rangle\!\rangle \in \mathsf{Cl}(\mathsf{S}E)$, prove that $(x_1 + u_1) \cup (x_2 + u_2) \in \mathsf{Cl}(E)$ and that $(x_1 + u_1) \cap (x_2 + u_2) = (x_1 \cap x_2) + (u_1 \cap u_2)$.
- (d) Let u ∈ Cl(E). We define a coherence space E_u by |E_u| = {a ∈ |E| | u and {a} are summable} and a ⊃_{E_u} a' if a ⊃_E a', so that Cl(E_u) = {x ∈ Cl(E) | x and u are summable} as easily checked. Let f : Cl(E) → Cl(F) be Scott-continuous and stable. We define a function Δ_uf : Cl(E_u) → P(|F|) by

$$\Delta_u f(x) = f(x+u) \smallsetminus f(x) \,.$$

Check that $\Delta_u f(x) \in Cl(F)$. Prove that $\Delta_u f$ is increasing and Scott-continuous. Prove that $\Delta_u f$ is stable.

- (e) (*) Conversely let $f : Cl(E) \to Cl(F)$ be Scott-continuous and assume that, for all $u \in Cl(E)$, the function $\Delta_u f : Cl(E_u) \to Cl(F)$ is increasing. Prove that f is stable.
- (f) (*) Let $f: \mathsf{Cl}(E) \to \mathsf{Cl}(F)$ be stable. We define a function

$$\Delta f : \mathsf{S}E \to \mathsf{S}F$$
$$\langle\!\langle x, u \rangle\!\rangle \mapsto \langle\!\langle f(x), \Delta_u f(x) \rangle\!\rangle.$$

Prove that Δf is a stable function.

(g) Prove that the operation defined in Question (f) is a functor $\Delta : \mathbf{Cohs} \to \mathbf{Cohs}$ which acts on objects by $\Delta E = \mathbf{S}E$. In other words prove that $\Delta \mathsf{Id} = \mathsf{Id}$ and, for $f \in \mathbf{Cohs}(E, F)$ and $g \in \mathbf{Cohs}(F, G)$, one has $\Delta(g \circ f) = \Delta g \circ \Delta f$.

We use $Cl_{fin}(E)$ for the set of finite cliques of E.

(h) Remember that if $f \in \mathbf{Cohs}(E, F)$, one defines $\operatorname{Tr} f$ as the set of all pairs $(x_0, b) \in \operatorname{Cl}_{fin}(E) \times |F|$ such that $b \in f(x_0)$ and x_0 is minimal with this property, that is: $\forall x \subseteq x_0 \ b \in f(x) \Rightarrow x = x_0$. Prove that

$$\mathsf{Tr}(\Delta f) = \{(\langle\!\langle x_0, \varnothing\rangle\!\rangle, (0, b)) \in \mathsf{Cl}_{\mathsf{fin}}(\mathsf{S}E) \times |\mathsf{S}F| \mid (x_0, b) \in \mathsf{Tr}f\} \\ \{(\langle\!\langle x_0, u_0\rangle\!\rangle, (1, b)) \in \mathsf{Cl}_{\mathsf{fin}}(\mathsf{S}E) \times |\mathsf{S}F| \mid (x_0 + u_0, b) \in \mathsf{Tr}f \text{ and } u_0 \neq \varnothing\}.$$