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We continue the study of the category of complete lattices and linear maps. In this problem, we
provide the main ingredients to exhibit a ∗-autonomous symmetric monoidal closed structure on Csl. In
other words Csl is a model of MALL (Multiplicative Additive Linear Logic).

2. (a) Prove that the set of linear morphisms S → T , equipped with the pointwise order (that is f ≤ g
if ∀x ∈ S f(x) ≤ g(x)), is a sup-CSL. We denote it as S ⊸ T .

(b) Given x ∈ S define a function x∗ : S → ⊥ by

x∗(y) =

{
1 if y ̸≤ x

0 if y ≤ x

Prove that x∗ ∈ S ⊸ ⊥.

(c) Given a sup-CSL S, we use Sop for the same set S equipped with the reverse order: x ≤Sop y
if y ≤S x. Prove that the map x 7→ x∗ is an order isomorphism from the poset Sop to S ⊸ ⊥.
Warning: one must prove that it is increasing in both directions because an increasing bijection
is not necessarily an order isomorphism! Call k : (S ⊸ ⊥) → Sop the inverse isomorphism.

(d) (*) Given f ∈ (S ⊸ T ) define f∗ : (T ⊸ ⊥) → (S ⊸ ⊥) by f∗(y′) = y′ f . Prove that f∗ ∈
Csl(T ⊸ ⊥, S ⊸ ⊥). Let f⊥ ∈ Csl(T op, Sop) be the associated morphism (through the iso k
defined above, that is f⊥(y) = k(f∗(y∗)) ). Prove that

∀x ∈ S ∀y ∈ T f(x) ≤ y ⇔ x ≤ f⊥(y) .

One says that f and f⊥ define a Galois connection between S and T . Last prove that f⊥⊥ = f .

(e) Given sup-CSLs S and T we define S ⊗ T as the set of all I ⊆ S × T such that

• I is down-closed (that is: is (x, y) ∈ I and (x0, y0) ∈ S×T are such that x0 ≤ x and y0 ≤ y
then (x0, y0) ∈ I).

• and, for all A ⊆ S and B ⊆ T , if A and B satisfy A×B ⊆ I then (
∨

A,
∨
B) ∈ I.

Prove that (S ⊗ T,⊆) is an inf-CSL (more precisely, it is closed under arbitrary intersections).
As a consequence, it is also a sup-CSL: if I ⊆ S ⊗ T then

∨
I =

⋂
{I ∈ S ⊗ T |

⋃
I ⊆ I}. But

notice that in this sup-CSL, the sups are not defined as unions in general.

(f) Prove that the least element of S ⊗ T is 0S⊗T = S × {0} ∪ {0} × T . [Hint: Remember that∨
∅ = 0 and that ∅ ×B = ∅ for any B. ]

(g) We say that a map f : S × T → U (where S, T, U are sup-CSLs) is bilinear if for all A ⊆ S
and B ⊆ T we have

∨
f(A × B) = f(

∨
(A × B)) = f(

∨
A,

∨
B). Prove that this condition is

equivalent to the following:

• for all x ∈ S and B ⊆ T , one has f(x,
∨

B) =
∨

y∈B f(x, y)
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• and for all y ∈ T and A ⊆ S, one has f(
∨
A, y) =

∨
x∈A f(x, y)

that is, f is separately linear in both arguments.

(h) (*) Given x ∈ S and y ∈ T let x⊗ y = ↓(x, y) ∪ 0S⊗T ⊆ S × T . Prove that x⊗ y ∈ S ⊗ T and
that the function τ : (x, y) 7→ x⊗ y is a bilinear map S × T → S ⊗ T .
Prove that, if I ∈ S ⊗ T then I =

∨
{x⊗ y | x ∈ S, y ∈ T and x⊗ y ⊆ I}.

(i) Let (S, T ) ⊸ U be the set of all bilinear maps S × T → U ordered pointwise (that is f ≤ g if
∀(x, y) ∈ S × T f(x, y) ≤ g(x, y)). Prove that (S, T ) ⊸ U and (S ⊸ (T ⊸ U)) are isomorphic
in Csl. Deduce from this fact that (S, T ) ⊸ U is a sup-CSL.

(j) (**) Let S, T and U be sup-CSLs. If f ∈ (S ⊗ T ⊸ U), then f τ ∈ ((S, T ) ⊸ U) by linearity
of f and the function

Φ : (S ⊗ T ⊸ U) → ((S, T ) ⊸ U)

f 7→ f τ

is a sup-CSL morphism (these facts are obvious).
Prove that Φ is injective and surjective. Deduce from this fact that Φ is an iso in Csl. [Hint:
To prove surjectivity, given h ∈ (S, T ) ⊸ U , define g : U → P(S × T ) by g(z) = {(x, y) ∈
S × T | h(x, y) ≤ z}, prove that g ∈ Csl(Uop, (S ⊗ T )

op
) and then show that Φ(g⊥) = h. Use

Question (d). ]

Using the fact that ⊸ is a functor Cslop ×Csl → Csl (which acts on morphisms by pre- and post-
composition, we saw a special case in Question (d)) and using the isomorphism Φ ∈ Csl(S ⊗ T ⊸
U, S ⊸ (T ⊸ U)), it is not difficult to show that Csl is an SMC which is ∗-autonomous with
dualizing object ⊥. The main missing ingredient is the functorial action of the _ ⊗ _ operation we
have defined on objects. The interested reader is encouraged to work this out!
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