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The signs (*) and (**) point out more difficult and interesting questions. These are of course
completely subjective indications!

In this problem we start the study of a denotational model of Linear Logic which is based on complete
sup-semilattices and linear maps.

This model of LL has two related interesting properties, which are not so common among the known
models of LL.

• It is not “based on webs”, that is, contrarily to what happens in the model of coherence spaces
and in the model Rel of sets and relations which will be a running example in my lectures, the
elements of its objects cannot always be described as subsets of a set of atoms (remember that the
cliques of a coherence space are subsets of the web of the coherence space, for instance).

• This model is a category which is complete, that is, it has all (projective) limits and also all colimits.

The existence of such models suggests that LL, as a logical system, might be extended with more limits
and colimits than those which are already represented as LL logical connectives (namely, the additive
connectives ⊤, &, 0 and ⊕).

When E is a category and X and Y are objects of E , we use E(X,Y ) for the set of morphisms from
X to Y in E . Given f ∈ E(X,Y ) and g ∈ E(Y,Z) we simply use g f for the composition of f with g,
rather that g ◦ f , to insist on the intiuition that the morphisms that we consider here are “linear” in
some sense.

A complete sup-semilattice (most often we will simply say “complete semilattice”, CSL or sup-CSL)
is a partially ordered set S (the order relation will always be denoted as ≤ or ≤S) such that each subset
A of S has a least upper bound

∨
A ∈ S (also called “lub”, “sup” or “supremum” of A). Remember that∨

A is uniquely characterized by

• ∀x ∈ A x ≤
∨
A

• ∀x ∈ S (∀y ∈ A y ≤ x) ⇒
∨
A ≤ x.

In particular S must have two elements 0 =
∨

∅ which is its least element and 1 =
∨
S which is its

greatest element. So a sup-semilattice is never empty.
A subset A of S is down-closed if for all x ∈ A and all y ∈ S, if y ≤ x then y ∈ A. Given x ∈ S we

set ↓x = {y ∈ S | y ≤ x}.
Each subset A of a complete semi-lattice S has a greatest lower bound (glb, inf or infimum)

∧
A,

which is given by ∧
A =

∨
{y ∈ S | ∀x ∈ A y ≤ x}

=
∨ ⋂

x∈A

↓x .

1



Dually a complete inf-semilattice (or inf-CSL) is a partially ordered set S where each subset A has a
glb

∧
A. Each inf-semilattice is also a sup-semilattice, with least upper bounds given by∨

A =
∧

{y ∈ S | ∀x ∈ A x ≤ y}

for all A ⊆ S.

A linear morphism of CSLs from S to T is a function f : S → T such that for all A ⊆ S f(
∨
A) =∨

f(A) where we define as usual f(A) = {f(x) | x ∈ A}. Notice that this implies that f is monotone:
given x ≤ y in S we have f(y) = f(

∨
{x, y}) = f(x)∨ f(y), that is f(x) ≤ f(y). Let Csl be the category

whose objects are the sup-semilattices and morphisms are the linear maps of sup-semilattices. We use
⊥ = {0 < 1} for the object of Csl which has exactly two elements.

It is easy to check that Csl is cartesian. The product of a family (Sj)j∈J of objects of Csl is the
usual cartesian product

∏
j∈J Sj equipped with the product order and projection defined in the usual

way. We also use S =
˘

j∈J Sj for this product and πj ∈ Csl(S, Sj) for the projections. The terminal
object is ⊤ = {0}.

The category Rel has all sets as objets, and Rel(E,F ) is the set of all relations from E to F , that
is, of all s ⊆ E × F . The identity at E in Rel is IdE = {(a, a) | a ∈ E} and composition is the usual
composition of relations, that is, if s ∈ Rel(E,F ) and t ∈ Rel(F,G), their composition is

t s = {(a, c) ∈ E ×G | ∃b ∈ F (a, b) ∈ s and (b, c) ∈ t} .

1. In this problem we study some general properties of this category Csl, in particular we show that
it is complete, that it contains Rel as a “full subcategory”, and we develop an example of a limit of
a diagram in Rel (an equalizer actually) which is a complete semilattice of which we will see that it
cannot be considered as an object of Rel.

(a) Given a function f from S to T , prove that the following properties are equivalent:

1. f is an isomorphism in Csl;
2. f is a bijection and is a morphism of Csl;
3. f is an increasing bijection whose inverse is also increasing.

Solution: We prove (1)⇒(2) ⇒(3)⇒(1).
Assume (1). Let f−1 be the inverse of f in Csl. Since composition and identites are defined
in Csl as in Set, the function f−1 is the inverse of the function f , so f is a bijection and
hence (2) holds.
Assume (2). Then, as we have seen above, f is increasing, and this is also true of f−1 since
f−1 ∈ Csl(T, S), so (3) holds.
Last assume (3) and let us prove (1). Let A ⊆ S, we must prove that f(

∨
A) =

∨
x∈A f(x).

We have f(
∨
A) ≥

∨
x∈A f(x) because f is increasing, since ∀x ∈ A x ≤

∨
A. Let B =

{f(x) | x ∈ A} ⊆ T . For the same reason, using the fact that f−1 is increasing, we have
f−1(

∨
B) ≥

∨
y∈B f

−1(y), that is f−1(
∨

x∈A f(x)) ≥
∨
A and hence, since f is increasing,

we have
∨

x∈A f(x) ≥ f(
∨
A). We have proven that f ∈ Csl(S, T ), and for the same reason

f−1 ∈ Csl(T, S), so that f is an iso in Csl.

(b) Given a set E we denote as P(E) its powerset (that is, the set of all of its subsets) ordered
by inclusion, so that P(E) is a sup-semilattice with

∨
A =

⋃
A for each A ⊆ P(E). Given

t ∈ Rel(E,F ) we define fun(t) : P(E) → P(F ) by fun(t)(x) = t ·x = {b ∈ F | ∃a ∈ x (a, b) ∈ t}.
Prove that fun(t) ∈ Csl(P(E),P(F )) and that, for each f ∈ Csl(P(E),P(F )) there is exactly
one t = tr(f) ∈ Rel(E,F ) such that f = fun(t). In other words, the functor L : Rel → Csl
which maps E to P(E) and t to fun(t) is full and faithful. So one can consider Rel as a “full
subcategory” of Csl.
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Solution: The fact that fun(t) commutes with unions follows immediately from the defini-
tion, hence fun(t) belongs to Csl(P(E),P(F ))). Let now f ∈ Csl(P(E),P(F )) and let us
set t = tr(f) = {(a, b) | b ∈ f({a})} ∈ Rel(E,F ). Let x ∈ P(E), we have

fun(t)(x) = {b ∈ F | ∃a ∈ x (a, b) ∈ t}

=
⋃
a∈x

f({a})

= f(x)

since f commutes with unions. This shows that t 7→ fun(t) is surjective. On the other hand
given t ∈ Rel(E,F ) we have

tr(fun(t)) = {(a, b) ∈ E × F | b ∈ fun(t)({a})} = t

by definition of fun(t) which shows that t 7→ fun(t) is injective.

(c) Prove that the category Csl has all equalizers, in other words: given objects S and T of Csl
and f, g ∈ Csl(S, T ) there is an object U of Csl and a morphism e ∈ Csl(U, S) such that

• f e = g e

• and, for each object V of Csl and each morphism h ∈ Csl(V, S) such that f h = g h, there
is exactly one morphism h0 ∈ Csl(V,U) such that h = e h0.

By a standard theorem of category theory, together with the fact that all products exist in Csl,
this shows that this category is complete, that is, all (projective) limits exist in Csl.

Solution: We take U = {x ∈ S | f(x) = g(x)}, equipped with the induced order relation
(that is x ≤U y if x ≤S y). Given A ⊆ U we have A ⊆ S so let x0 be the lub of A in S.
Since f and g are linear we have

f(x0) =
∨
f(A)

=
∨
g(A) since A ⊆ U

= g(x0)

and hence x0 ∈ U .
Next one proves that x0 is the lub of A in U . First given x ∈ A one has x ≤S x0 and
hence x ≤U x0 since x, x0 ∈ U . Next let y ∈ U be such that ∀x ∈ A x ≤U y, we have
∀x ∈ A x ≤S y and hence x0 ≤S y, that is x0 ≤U y since x0, y ∈ U .
The inclusion map e : U → S (that is e(x) = x) is linear since we have seen that the lubs
are computed in U exactly as in S.
Let now V be a sup-semilattice and h ∈ Csl(V, S) be such that f h = g h. This means that
actually ∀v ∈ V h(v) ∈ U . So we can define h0 : V → U by h0(v) = h(v). Again, the
linearity of h0 results from the fact that the sups in U are computed exactly as in S so that
h0 ∈ Csl(V,U). Last the uniqueness of h0 results from the fact that e is injective.
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The Cantor space is the set {0, 1}ω of all infinites sequences α of 0 and 1 equipped with the following
topology (which is the product topology of the discrete space {0, 1}): a subset U of {0, 1}ω is open
iff for each α ∈ U there is a finite prefix w of α such that, for each β ∈ {0, 1}ω, if w is a prefix of β
then β ∈ U .
Hence a subset F of {0, 1}ω is closed (that is {0, 1}ω \F is open) iff it has the following property: if
α ∈ {0, 1}ω is such that, for each finite prefix w of α there exists β ∈ F such that w is a prefix of β,
then α ∈ F . As in all topological spaces, if F is a set of closed subsets then

⋂
F is closed (you are

advised to check this directly using the characterization above of closed subsets).
So the set of closed subsets of {0, 1}ω ordered by inclusion is an inf-CSL: each subset F of this set has
a greatest lower bound, namely

⋂
F . Hence the set of closed subsets of {0, 1}ω ordered by inclusion

is also a CSL: the lub of a set of closed sets is the closure of its union (= the intersection of all closed
sets which contain this union).
We use C for the CSL of closed subsets of the Cantor space ordered by inclusion.
We use {0, 1}∗ for the set of finite sequences of 0’s and 1’s, and if w ∈ {0, 1}∗ and α ∈ {0, 1}ω, we
write w < α when w is a prefix of α.
(d) Prove that for each α ∈ {0, 1}ω, one has {α} ∈ C.

Solution: Let β ∈ {0, 1}ω be such that each finite prefix has an extension in {α}: this
means that each finite prefix of β is a prefix of α, so β = α. Hence {α} is closed. All
singletons are closed in all topological spaces which are T1-separated (which is the case of
the Cantor space, which is actually Hausdorff, that is, T2).

(e) Prove that if w ∈ {0, 1}∗ then the set E(w) = {α ∈ {0, 1}ω | w < α} is at the same time open
and closed (one says that it is a clopen).

Solution: If α ∈ {0, 1}ω is such that α ∈ E(w) then w < α, and we have ∀β ∈ {0, 1}ω w <
β ⇒ β ∈ E(w), so E(w) is open.
Now let α ∈ {0, 1}ω be such that ∀v < α ∃β ∈ E(w) v < β. Let v ∈ {0, 1}∗ be the prefix of
α which has the same length as w, there must be β ∈ E(w) such that v < β. So we have
v < β and w < β and hence v = w (the prefix order is a total order on the set of prefixes
of each given element of {0, 1}). This shows that α ∈ E(w) and hence E(w) is closed.

(f) (**) Let W = {0, 1}∗. If w = ⟨a1, . . . , an⟩ ∈ W and a ∈ {0, 1} let wa = ⟨a1, . . . , an, a⟩.
Let θ = {(wa,w) | w ∈ W and a ∈ {0, 1}} ∈ Rel(W,W ). Let (C, c) be the equalizer of
Id, fun(θ) ∈ Csl(P(W ),P(X)) (so that C is a sup-semilattice and c ∈ Csl(C,P(W )) by Question
(c)). Exhibit an order isomorphism between C and C. Describe the lub operation in this
complete lattice.

Solution: By Question (c), we know that C = {x ⊆ W | θ · x = x}. So for x ⊆ W , the
condition x ∈ C means:

• θ · x ⊆ x, that is, if wa ∈ x then w ∈ x, that is, x is prefix-closed

• and x ⊆ θ · x that is, if w ∈ x then there is a ∈ {0, 1} such that wa ∈ x: each element
of x has an extension in x.

So we decide to see such an x ∈ C as the set of all prefixes of the elements of a subset of
{0, 1}ω. More precisely let

φ(x) = {α ∈ {0, 1}ω | ∀w ∈W w < α⇒ w ∈ x} .

We prove that φ(x) ∈ C, that is, φ(x) is a closed subset of {0, 1}ω. Let α ∈ {0, 1}ω be
such that for all w < α there is β ∈ {0, 1}ω such that β ∈ φ(x) and w < β. This implies
∀w ∈ W w < α ⇒ w ∈ x and hence α ∈ φ(x), so φ(x) is closed. Notice that the map φ is
increasing (with respect to set inclusion).

4



Conversely given F ∈ C let

ψ(F ) = {w ∈W | ∃α ∈ F w < α} .

Then we clearly have ψ(F ) ∈ C and it is also clear that ψ is an increasing function.
Let us prove that φ(ψ(F )) = F for all F ∈ C. We first prove that F ⊆ φ(ψ(F )) so let
α ∈ F . For all w < α we have w ∈ ψ(F ) by definition of ψ, and hence α ∈ φ(ψ(F )) by
definition of φ. Conversely let α ∈ φ(ψ(F )). This means ∀w ∈W w < α⇒ w ∈ ψ(F ) that
is ∀w ∈ W w < α ⇒ ∃β ∈ F w < β which implies α ∈ F because F is closed. So we have
proven that φ ◦ ψ = Id, we prove now that ψ ◦ φ = Id.
Let x ∈ C, we prove first that x ⊆ ψ(φ(x)). Let w ∈ x. Using the assumption that x ∈ C
we can build by induction a sequence a1, a2, . . . of elements of {0, 1} such that, for all
n ∈ N, one has wa1 . . . an ∈ x. So let α = wa1a2 · · · ∈ {0, 1}ω. If w′ < α we have either
w′ = wa1 . . . an for some n, or w′ is a prefix of w. Hence w′ ∈ x. This shows that α ∈ φ(x).
Since w < α it follows that w ∈ ψ(φ(x)). Conversely let w ∈ ψ(φ(x)). Let α ∈ φ(x) be
such that w < α. By definition of φ(x), we have w ∈ x.
By Question (a), φ is an isomorphism in Csl.
As seen in Question (c), the lub operation in C is defined as in P(W ), and hence it is just
union.

Given a CSL S, we say that x ∈ S is prime if

∀A ⊆ S x ≤
∨
A⇒ ∃y ∈ A x ≤ y .

(g) (*) Prove that, for a set E, the prime elements of P(E) ∈ Csl are exactly the singletons. Prove
that C has no prime elements.
[Hint: For the second part, prove first that if F ∈ C is prime, it must be a singleton {α} and
then prove that no such singleton is prime. For this remember that, for a collection F of closed
subsets of {0, 1}ω, the closed set

∨
F is the closure of

⋃
F (the intersection of all closed sets

which contain
⋃
F). So build a set F of shape F = {{α(n)} | n ∈ N} where α(n) →n→∞ α for

the topology of the Cantor space and ∀n ∈ N α(n) ̸= α. ]

Solution: For the first part observe that for each x ⊆ E one has x =
⋃

a∈x {a}. So if x is
prime we must have x ⊆ {a} for some a ∈ X. We cannot have x = ∅ since ∅ =

⋃
∅ and

hence ∅ is not prime. Conversely it is obvious that if a is a singleton then {a} is prime.
Concerning C remember first from Question (d) that each singleton {α} is closed, that is
{α} ∈ C. Now let F be closed and assume that F is not a singleton. If F = ∅ then F is
not prime because

∨
∅ = ∅. So let α, β ∈ F with α ̸= β. Let w < α be such that w ̸< β.

Remember from Question (e) that the set E(w) = {γ ∈ {0, 1}ω | w < γ} is closed and open.
Hence F ∩ E(w) and F \ E(w) are both closed and satisfy (F ∩ E(w)) ∨ (F \ E(w)) = F
since

F = (F ∩ E(w)) ∪ (F \ E(w)) ⊆ (F ∩ E(w)) ∨ (F \ E(w)) ⊆ F,

so F is not prime: remember that α, β ∈ F , but we don’t have F ⊆ F ∩ E(w) since
β /∈ F ∩ E(w) and we don’t have F ⊆ F \ E(w) because α /∈ F \ E(w).
Now we prove that {α} is never prime, whatever be α = ⟨a1, a2, . . .⟩. For each n ∈ N let
α(n) ∈ {0, 1}ω be defined (for instance) by

α(n) = ⟨a1, . . . , an−1, 1− an, 0, 0, . . .⟩

so that α(n) →n→∞ α (for the topology of the Cantor space). It follows that

α ∈
∞∨

n=1

{α(n)}
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but by construction α ̸= α(n) for all n. It follows that {α} is not prime and hence C has
no prime elements.

This strongly suggests that the category Rel is not complete, and more precisely that it has no
equalizer for the two maps θ, Id ∈ Rel(W,W ) because the equalizer of fun(θ) and Id in Csl is not
an object of Rel. Indeed this equalizer C is an infinite CSL which is isomorphic to C, a CSL which
has no prime elements, whereas the only set E such that the CSL (P(E),⊆) has no prime element
is E = ∅. In the last questions of this problem, we prove rigorously that θ and Id have no equalizer
in Rel.
(h) Let E be a category and let f1, f2 ∈ E(X,Y ) be two morphisms. Let Z be an object of E and

e ∈ E(Z,X) be such that (Z, e) is an equalizer of f1 and f2. Remember that this means
• f1 e = f2 e

• and, for each object U of E and each h ∈ E(U,X) such that f1 h = f2 h, there is exactly
one h0 ∈ E(U,Z) such that h = e h0.

Prove that e is a monomorphism. This means intuitively that e is “injective”. The precise
definition is: given two morphisms k1, k2 ∈ E(V,Z), if e k1 = e k2 then k1 = k2.

Solution: With the notations above, assume that e k1 = e k2 ∈ E(V,X) and let us use
g for this morphism. We have f1 e = f2 e and hence f1 g = f2 g and so there is a unique
morphism k ∈ E(V,E) such that e k = g. Now both k = k1 and k = k2 satisfy this equation,
hence k1 = k2.

(i) Prove that if a morphism t in Rel is a monomorphism, then the associated function fun(t) is
injective.

Solution: We use 1 for a chosen set which has exactly one element: 1 = {∗}.
Let t ∈ Rel(E,F ) be a monomorphism. Let x1, x2 ∈ P(E) and assume that fun(t)(x1) =
fun(t)(x2). Let si = {(∗, a) | a ∈ xi} ∈ Rel(1, E) for i = 1, 2. For i = 1, 2, we have
t si = {(∗, a) | a ∈ fun(t)(xi)} and hence t s1 = t s2 so that s1 = s2 since t is a mono.
Therefore x1 = fun(s1)({∗}) = fun(s2)({∗}) = x2.

(j) (**) Complete the proof that the equalizer of θ and Id does not exist in Rel.

Solution: In what follows, to increase readability, we identify the sets Rel(G,H) and
Csl(P(G),P(H)) for all sets G and H, through the bijection fun(_).
Towards a contradiction, assume that this equalizer (E, e) exists in Rel so that E is a set
and e ∈ Csl(P(E),P(W )). Let f ∈ Csl(P(E), C) be the unique CSL morphism such that
e = c f (which exists because (C, c) is the equalizer of θ and Id in Csl).
Given x ∈ C, we can define a function gx : P(1) → C by gx(∅) = ∅ and g({∗}) = x and
it is clear that gx ∈ Csl(P(1), C). Moreover θ c gx = c gx because x ∈ C and hence, since
c gx ∈ Rel(1,W ), there is exactly one morphism hx ∈ Rel(1, E) such that e hx = c gx.
We set h(x) = hx({∗}). In that way we have defined a function h : C → P(E), which is
completely characterized by

∀x ∈ C e(h(x)) = c(x) .

We prove that this function h belongs to Csl(C,P(E)).
Let A ⊆ C. Since (P(E), e) is an equalizer in Rel, e is a monomorphism in Rel by
Question (h) and hence, considered as a function, it is injective by Question (i). We have,
using the definition of c, e(h(

⋃
A)) = c(

⋃
A) =

⋃
A and e(

⋃
h(A)) =

⋃
e(h(A)) since e

is a morphism in Csl and hence e(
⋃
h(A)) =

⋃
A. By injectivity of e, we have therefore

h(
⋃
A) =

⋃
x∈A h(x) =

⋃
h(A) and hence h ∈ Csl(C,P(E)).
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We have e h f = c f = e and hence h f = Id since e is a mono. And c f h = e h = c and
hence f h = Id since c is a mono.
This shows that f and h define an isomorphism in Csl between P(E) and C which is
impossible since C has no prime elements whereas E has P(E) has prime elements.
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