MPRI 2–2 Models of programming languages: domains, categories, games

Problem 1: General properties of Complete Lattices

Thomas Ehrhard

November 13, 2024

The signs (*) and (**) point out more difficult and interesting questions. These are of course completely subjective indications!

In this problem we start the study of a denotational model of Linear Logic which is based on complete sup-semilattices and linear maps.

This model of LL has two related interesting properties, which are not so common among the known models of LL.

- It is not "based on webs", that is, contrarily to what happens in the model of coherence spaces and in the model **Rel** of sets and relations which will be a running example in my lectures, the elements of its objects cannot always be described as subsets of a set of atoms (remember that the cliques of a coherence space are subsets of the web of the coherence space, for instance).
- This model is a category which is *complete*, that is, it has all (projective) limits and also all colimits.

The existence of such models suggests that LL, as a logical system, might be extended with more limits and colimits than those which are already represented as LL logical connectives (namely, the additive connectives \top , &, 0 and \oplus).

When \mathcal{E} is a category and X and Y are objects of \mathcal{E} , we use $\mathcal{E}(X, Y)$ for the set of morphisms from X to Y in \mathcal{E} . Given $f \in \mathcal{E}(X, Y)$ and $g \in \mathcal{E}(Y, Z)$ we simply use gf for the composition of f with g, rather that $g \circ f$, to insist on the intiuition that the morphisms that we consider here are "linear" in some sense.

A complete sup-semilattice (most often we will simply say "complete semilattice", CSL or sup-CSL) is a partially ordered set S (the order relation will always be denoted as \leq or \leq_S) such that each subset A of S has a least upper bound $\bigvee A \in S$ (also called "lub", "sup" or "supremum" of A). Remember that $\bigvee A$ is uniquely characterized by

- $\forall x \in A \ x \leq \bigvee A$
- $\forall x \in S \ (\forall y \in A \ y \le x) \Rightarrow \bigvee A \le x.$

In particular S must have two elements $0 = \bigvee \emptyset$ which is its least element and $1 = \bigvee S$ which is its greatest element. So a sup-semilattice is never empty.

A subset A of S is down-closed if for all $x \in A$ and all $y \in S$, if $y \leq x$ then $y \in A$. Given $x \in S$ we set $\downarrow x = \{y \in S \mid y \leq x\}$.

Each subset A of a complete semi-lattice S has a greatest lower bound (glb, inf or infimum) $\bigwedge A$, which is given by

$$\bigwedge A = \bigvee \{ y \in S \mid \forall x \in A \ y \le x \}$$
$$= \bigvee \bigcap_{x \in A} \downarrow x .$$

Dually a complete *inf-semilattice* (or inf-CSL) is a partially ordered set S where each subset A has a glb $\bigwedge A$. Each inf-semilattice is also a sup-semilattice, with least upper bounds given by

$$\bigvee A = \bigwedge \{ y \in S \mid \forall x \in A \ x \le y \}$$

for all $A \subseteq S$.

A linear morphism of CSLs from S to T is a function $f: S \to T$ such that for all $A \subseteq S$ $f(\bigvee A) = \bigvee f(A)$ where we define as usual $f(A) = \{f(x) \mid x \in A\}$. Notice that this implies that f is monotone: given $x \leq y$ in S we have $f(y) = f(\bigvee\{x, y\}) = f(x) \lor f(y)$, that is $f(x) \leq f(y)$. Let **Csl** be the category whose objects are the sup-semilattices and morphisms are the linear maps of sup-semilattices. We use $\bot = \{0 < 1\}$ for the object of **Csl** which has exactly two elements.

It is easy to check that **Csl** is cartesian. The product of a family $(S_j)_{j\in J}$ of objects of **Csl** is the usual cartesian product $\prod_{j\in J} S_j$ equipped with the product order and projection defined in the usual way. We also use $S = \&_{j\in J} S_j$ for this product and $\pi_j \in \mathbf{Csl}(S, S_j)$ for the projections. The terminal object is $\top = \{0\}$.

The category **Rel** has all sets as objets, and **Rel**(E, F) is the set of all relations from E to F, that is, of all $s \subseteq E \times F$. The identity at E in **Rel** is $Id_E = \{(a, a) \mid a \in E\}$ and composition is the usual composition of relations, that is, if $s \in \mathbf{Rel}(E, F)$ and $t \in \mathbf{Rel}(F, G)$, their composition is

$$ts = \{(a,c) \in E \times G \mid \exists b \in F \ (a,b) \in s \text{ and } (b,c) \in t\}.$$

- 1. In this problem we study some general properties of this category Csl, in particular we show that it is complete, that it contains **Rel** as a "full subcategory", and we develop an example of a limit of a diagram in **Rel** (an equalizer actually) which is a complete semilattice of which we will see that it cannot be considered as an object of **Rel**.
 - (a) Given a function f from S to T, prove that the following properties are equivalent:
 - 1. f is an isomorphism in **Csl**;
 - 2. f is a bijection and is a morphism of **Csl**;
 - 3. f is an increasing bijection whose inverse is also increasing.

Solution: We prove $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.

Assume (1). Let f^{-1} be the inverse of f in **Csl**. Since composition and identites are defined in **Csl** as in **Set**, the function f^{-1} is the inverse of the function f, so f is a bijection and hence (2) holds.

Assume (2). Then, as we have seen above, f is increasing, and this is also true of f^{-1} since $f^{-1} \in \mathbf{Csl}(T, S)$, so (3) holds.

Last assume (3) and let us prove (1). Let $A \subseteq S$, we must prove that $f(\bigvee A) = \bigvee_{x \in A} f(x)$. We have $f(\bigvee A) \ge \bigvee_{x \in A} f(x)$ because f is increasing, since $\forall x \in A \ x \le \bigvee A$. Let $B = \{f(x) \mid x \in A\} \subseteq T$. For the same reason, using the fact that f^{-1} is increasing, we have $f^{-1}(\bigvee B) \ge \bigvee_{y \in B} f^{-1}(y)$, that is $f^{-1}(\bigvee_{x \in A} f(x)) \ge \bigvee A$ and hence, since f is increasing, we have $\bigvee_{x \in A} f(x) \ge f(\bigvee A)$. We have proven that $f \in \mathbf{Csl}(S, T)$, and for the same reason $f^{-1} \in \mathbf{Csl}(T, S)$, so that f is an iso in \mathbf{Csl} .

(b) Given a set E we denote as $\mathcal{P}(E)$ its powerset (that is, the set of all of its subsets) ordered by inclusion, so that $\mathcal{P}(E)$ is a sup-semilattice with $\bigvee A = \bigcup A$ for each $A \subseteq \mathcal{P}(E)$. Given $t \in \operatorname{\mathbf{Rel}}(E, F)$ we define $\operatorname{fun}(t) : \mathcal{P}(E) \to \mathcal{P}(F)$ by $\operatorname{fun}(t)(x) = t \cdot x = \{b \in F \mid \exists a \in x \ (a, b) \in t\}$. Prove that $\operatorname{fun}(t) \in \operatorname{\mathbf{Csl}}(\mathcal{P}(E), \mathcal{P}(F))$ and that, for each $f \in \operatorname{\mathbf{Csl}}(\mathcal{P}(E), \mathcal{P}(F))$ there is exactly one $t = \operatorname{tr}(f) \in \operatorname{\mathbf{Rel}}(E, F)$ such that $f = \operatorname{fun}(t)$. In other words, the functor $L : \operatorname{\mathbf{Rel}} \to \operatorname{\mathbf{Csl}}$ which maps E to $\mathcal{P}(E)$ and t to $\operatorname{fun}(t)$ is full and faithful. So one can consider $\operatorname{\mathbf{Rel}}$ as a "full subcategory" of $\operatorname{\mathbf{Csl}}$. **Solution:** The fact that fun(t) commutes with unions follows immediately from the definition, hence fun(t) belongs to $\mathbf{Csl}(\mathcal{P}(E), \mathcal{P}(F))$. Let now $f \in \mathbf{Csl}(\mathcal{P}(E), \mathcal{P}(F))$ and let us set $t = tr(f) = \{(a, b) \mid b \in f(\{a\})\} \in \mathbf{Rel}(E, F)$. Let $x \in \mathcal{P}(E)$, we have

$$\begin{aligned} \mathsf{fun}(t)(x) &= \{ b \in F \mid \exists a \in x \ (a,b) \in t \} \\ &= \bigcup_{a \in x} f(\{a\}) \\ &= f(x) \end{aligned}$$

since f commutes with unions. This shows that $t \mapsto \mathsf{fun}(t)$ is surjective. On the other hand given $t \in \mathbf{Rel}(E, F)$ we have

$$\mathsf{tr}(\mathsf{fun}(t)) = \{(a,b) \in E \times F \mid b \in \mathsf{fun}(t)(\{a\})\} = t$$

by definition of fun(t) which shows that $t \mapsto fun(t)$ is injective.

- (c) Prove that the category Csl has all equalizers, in other words: given objects S and T of Csl and $f, g \in Csl(S,T)$ there is an object U of Csl and a morphism $e \in Csl(U,S)$ such that
 - f e = g e
 - and, for each object V of Csl and each morphism $h \in Csl(V, S)$ such that f h = g h, there is exactly one morphism $h_0 \in Csl(V, U)$ such that $h = e h_0$.

By a standard theorem of category theory, together with the fact that all products exist in Csl, this shows that this category is complete, that is, all (projective) limits exist in Csl.

Solution: We take $U = \{x \in S \mid f(x) = g(x)\}$, equipped with the induced order relation (that is $x \leq_U y$ if $x \leq_S y$). Given $A \subseteq U$ we have $A \subseteq S$ so let x_0 be the lub of A in S. Since f and g are linear we have

$$f(x_0) = \bigvee f(A)$$

= $\bigvee g(A)$ since $A \subseteq U$
= $g(x_0)$

and hence $x_0 \in U$.

Next one proves that x_0 is the lub of A in U. First given $x \in A$ one has $x \leq_S x_0$ and hence $x \leq_U x_0$ since $x, x_0 \in U$. Next let $y \in U$ be such that $\forall x \in A \ x \leq_U y$, we have $\forall x \in A \ x \leq_S y$ and hence $x_0 \leq_S y$, that is $x_0 \leq_U y$ since $x_0, y \in U$.

The inclusion map $e: U \to S$ (that is e(x) = x) is linear since we have seen that the lubs are computed in U exactly as in S.

Let now V be a sup-semilattice and $h \in \mathbf{Csl}(V, S)$ be such that f h = g h. This means that actually $\forall v \in V \ h(v) \in U$. So we can define $h_0 : V \to U$ by $h_0(v) = h(v)$. Again, the linearity of h_0 results from the fact that the sups in U are computed exactly as in S so that $h_0 \in \mathbf{Csl}(V, U)$. Last the uniqueness of h_0 results from the fact that e is injective. The *Cantor space* is the set $\{0,1\}^{\omega}$ of all infinites sequences α of 0 and 1 equipped with the following topology (which is the product topology of the discrete space $\{0,1\}$): a subset U of $\{0,1\}^{\omega}$ is open iff for each $\alpha \in U$ there is a finite prefix w of α such that, for each $\beta \in \{0,1\}^{\omega}$, if w is a prefix of β then $\beta \in U$.

Hence a subset F of $\{0,1\}^{\omega}$ is closed (that is $\{0,1\}^{\omega} \setminus F$ is open) iff it has the following property: if $\alpha \in \{0,1\}^{\omega}$ is such that, for each finite prefix w of α there exists $\beta \in F$ such that w is a prefix of β , then $\alpha \in F$. As in all topological spaces, if \mathcal{F} is a set of closed subsets then $\bigcap \mathcal{F}$ is closed (you are advised to check this directly using the characterization above of closed subsets).

So the set of closed subsets of $\{0, 1\}^{\omega}$ ordered by inclusion is an inf-CSL: each subset \mathcal{F} of this set has a greatest lower bound, namely $\bigcap \mathcal{F}$. Hence the set of closed subsets of $\{0, 1\}^{\omega}$ ordered by inclusion is also a CSL: the lub of a set of closed sets is the *closure* of its union (= the intersection of all closed sets which contain this union).

We use C for the CSL of closed subsets of the Cantor space ordered by inclusion.

We use $\{0,1\}^*$ for the set of finite sequences of 0's and 1's, and if $w \in \{0,1\}^*$ and $\alpha \in \{0,1\}^{\omega}$, we write $w < \alpha$ when w is a prefix of α .

(d) Prove that for each $\alpha \in \{0,1\}^{\omega}$, one has $\{\alpha\} \in \mathcal{C}$.

Solution: Let $\beta \in \{0,1\}^{\omega}$ be such that each finite prefix has an extension in $\{\alpha\}$: this means that each finite prefix of β is a prefix of α , so $\beta = \alpha$. Hence $\{\alpha\}$ is closed. All singletons are closed in all topological spaces which are T_1 -separated (which is the case of the Cantor space, which is actually Hausdorff, that is, T_2).

(e) Prove that if $w \in \{0,1\}^*$ then the set $E(w) = \{\alpha \in \{0,1\}^{\omega} \mid w < \alpha\}$ is at the same time open and closed (one says that it is a clopen).

Solution: If $\alpha \in \{0,1\}^{\omega}$ is such that $\alpha \in E(w)$ then $w < \alpha$, and we have $\forall \beta \in \{0,1\}^{\omega} w < \beta \Rightarrow \beta \in E(w)$, so E(w) is open.

Now let $\alpha \in \{0,1\}^{\omega}$ be such that $\forall v < \alpha \exists \beta \in E(w) \ v < \beta$. Let $v \in \{0,1\}^*$ be the prefix of α which has the same length as w, there must be $\beta \in E(w)$ such that $v < \beta$. So we have $v < \beta$ and $w < \beta$ and hence v = w (the prefix order is a total order on the set of prefixes of each given element of $\{0,1\}$). This shows that $\alpha \in E(w)$ and hence E(w) is closed.

(f) (**) Let $W = \{0,1\}^*$. If $w = \langle a_1, \ldots, a_n \rangle \in W$ and $a \in \{0,1\}$ let $wa = \langle a_1, \ldots, a_n, a \rangle$. Let $\theta = \{(wa, w) \mid w \in W \text{ and } a \in \{0,1\}\} \in \mathbf{Rel}(W, W)$. Let (C, c) be the equalizer of $\mathsf{Id}, \mathsf{fun}(\theta) \in \mathbf{Csl}(\mathcal{P}(W), \mathcal{P}(X))$ (so that C is a sup-semilattice and $c \in \mathbf{Csl}(C, \mathcal{P}(W))$) by Question (c)). Exhibit an order isomorphism between C and C. Describe the lub operation in this complete lattice.

Solution: By Question (c), we know that $C = \{x \subseteq W \mid \theta \cdot x = x\}$. So for $x \subseteq W$, the condition $x \in C$ means:

- $\theta \cdot x \subseteq x$, that is, if $wa \in x$ then $w \in x$, that is, x is prefix-closed
- and $x \subseteq \theta \cdot x$ that is, if $w \in x$ then there is $a \in \{0, 1\}$ such that $wa \in x$: each element of x has an extension in x.

So we decide to see such an $x \in C$ as the set of all prefixes of the elements of a subset of $\{0,1\}^{\omega}$. More precisely let

$$\varphi(x) = \{ \alpha \in \{0,1\}^{\omega} \mid \forall w \in W \ w < \alpha \Rightarrow w \in x \}.$$

We prove that $\varphi(x) \in \mathcal{C}$, that is, $\varphi(x)$ is a closed subset of $\{0,1\}^{\omega}$. Let $\alpha \in \{0,1\}^{\omega}$ be such that for all $w < \alpha$ there is $\beta \in \{0,1\}^{\omega}$ such that $\beta \in \varphi(x)$ and $w < \beta$. This implies $\forall w \in W \ w < \alpha \Rightarrow w \in x$ and hence $\alpha \in \varphi(x)$, so $\varphi(x)$ is closed. Notice that the map φ is increasing (with respect to set inclusion). Conversely given $F \in \mathcal{C}$ let

$$\psi(F) = \{ w \in W \mid \exists \alpha \in F \ w < \alpha \}.$$

Then we clearly have $\psi(F) \in C$ and it is also clear that ψ is an increasing function. Let us prove that $\varphi(\psi(F)) = F$ for all $F \in C$. We first prove that $F \subseteq \varphi(\psi(F))$ so let $\alpha \in F$. For all $w < \alpha$ we have $w \in \psi(F)$ by definition of ψ , and hence $\alpha \in \varphi(\psi(F))$ by definition of φ . Conversely let $\alpha \in \varphi(\psi(F))$. This means $\forall w \in W \ w < \alpha \Rightarrow w \in \psi(F)$ that is $\forall w \in W \ w < \alpha \Rightarrow \exists \beta \in F \ w < \beta$ which implies $\alpha \in F$ because F is closed. So we have proven that $\varphi \circ \psi = \operatorname{Id}$, we prove now that $\psi \circ \varphi = \operatorname{Id}$. Let $x \in C$, we prove first that $x \subseteq \psi(\varphi(x))$. Let $w \in x$. Using the assumption that $x \in C$ we can build by induction a sequence a_1, a_2, \ldots of elements of $\{0, 1\}$ such that, for all $n \in \mathbb{N}$, one has $wa_1 \ldots a_n \in x$. So let $\alpha = wa_1a_2 \cdots \in \{0, 1\}^{\omega}$. If $w' < \alpha$ we have either $w' = wa_1 \ldots a_n$ for some n, or w' is a prefix of w. Hence $w' \in x$. This shows that $\alpha \in \varphi(x)$. Since $w < \alpha$ it follows that $w \in \psi(\varphi(x))$. Conversely let $w \in \psi(\varphi(x))$. Let $\alpha \in \varphi(x)$ be such that $w < \alpha$. By definition of $\varphi(x)$, we have $w \in x$. By Question (a), φ is an isomorphism in **Csl**. As seen in Question (c), the lub operation in C is defined as in $\mathcal{P}(W)$, and hence it is just union.

Given a CSL S, we say that $x \in S$ is prime if

$$\forall A \subseteq S \quad x \leq \bigvee A \Rightarrow \exists y \in A \ x \leq y \,.$$

(g) (*) Prove that, for a set E, the prime elements of $\mathcal{P}(E) \in \mathbf{Csl}$ are exactly the singletons. Prove that \mathcal{C} has no prime elements.

[*Hint:* For the second part, prove first that if $F \in C$ is prime, it must be a singleton $\{\alpha\}$ and then prove that no such singleton is prime. For this remember that, for a collection \mathcal{F} of closed subsets of $\{0,1\}^{\omega}$, the closed set $\bigvee \mathcal{F}$ is the closure of $\bigcup \mathcal{F}$ (the intersection of all closed sets which contain $\bigcup \mathcal{F}$). So build a set \mathcal{F} of shape $\mathcal{F} = \{\{\alpha(n)\} \mid n \in \mathbb{N}\}$ where $\alpha(n) \to_{n \to \infty} \alpha$ for the topology of the Cantor space and $\forall n \in \mathbb{N} \ \alpha(n) \neq \alpha$.]

Solution: For the first part observe that for each $x \subseteq E$ one has $x = \bigcup_{a \in x} \{a\}$. So if x is prime we must have $x \subseteq \{a\}$ for some $a \in X$. We cannot have $x = \emptyset$ since $\emptyset = \bigcup \emptyset$ and hence \emptyset is not prime. Conversely it is obvious that if a is a singleton then $\{a\}$ is prime. Concerning C remember first from Question (d) that each singleton $\{\alpha\}$ is closed, that is $\{\alpha\} \in C$. Now let F be closed and assume that F is not a singleton. If $F = \emptyset$ then F is not prime because $\bigvee \emptyset = \emptyset$. So let $\alpha, \beta \in F$ with $\alpha \neq \beta$. Let $w < \alpha$ be such that $w \notin \beta$. Remember from Question (e) that the set $E(w) = \{\gamma \in \{0,1\}^{\omega} \mid w < \gamma\}$ is closed and open. Hence $F \cap E(w)$ and $F \setminus E(w)$ are both closed and satisfy $(F \cap E(w)) \lor (F \setminus E(w)) = F$ since

$$F = (F \cap E(w)) \cup (F \setminus E(w)) \subseteq (F \cap E(w)) \lor (F \setminus E(w)) \subseteq F$$

so F is not prime: remember that $\alpha, \beta \in F$, but we don't have $F \subseteq F \cap E(w)$ since $\beta \notin F \cap E(w)$ and we don't have $F \subseteq F \setminus E(w)$ because $\alpha \notin F \setminus E(w)$. Now we prove that $\{\alpha\}$ is never prime, whatever be $\alpha = \langle a_1, a_2, \ldots \rangle$. For each $n \in \mathbb{N}$ let $\alpha(n) \in \{0,1\}^{\omega}$ be defined (for instance) by

$$\alpha(n) = \langle a_1, \dots, a_{n-1}, 1 - a_n, 0, 0, \dots \rangle$$

so that $\alpha(n) \to_{n \to \infty} \alpha$ (for the topology of the Cantor space). It follows that

$$\alpha \in \bigvee_{n=1}^{\infty} \left\{ \alpha(n) \right\}$$

but by construction $\alpha \neq \alpha(n)$ for all n. It follows that $\{\alpha\}$ is not prime and hence C has no prime elements.

This strongly suggests that the category **Rel** is not complete, and more precisely that it has no equalizer for the two maps θ , $\mathsf{ld} \in \mathbf{Rel}(W, W)$ because the equalizer of $\mathsf{fun}(\theta)$ and ld in **Csl** is not an object of **Rel**. Indeed this equalizer C is an infinite CSL which is isomorphic to C, a CSL which has no prime elements, whereas the only set E such that the CSL $(\mathcal{P}(E), \subseteq)$ has no prime element is $E = \emptyset$. In the last questions of this problem, we prove rigorously that θ and ld have no equalizer in **Rel**.

- (h) Let \mathcal{E} be a category and let $f_1, f_2 \in \mathcal{E}(X, Y)$ be two morphisms. Let Z be an object of \mathcal{E} and $e \in \mathcal{E}(Z, X)$ be such that (Z, e) is an equalizer of f_1 and f_2 . Remember that this means
 - $f_1 e = f_2 e$
 - and, for each object U of \mathcal{E} and each $h \in \mathcal{E}(U, X)$ such that $f_1 h = f_2 h$, there is exactly one $h_0 \in \mathcal{E}(U, Z)$ such that $h = e h_0$.

Prove that e is a monomorphism. This means intuitively that e is "injective". The precise definition is: given two morphisms $k_1, k_2 \in \mathcal{E}(V, Z)$, if $e k_1 = e k_2$ then $k_1 = k_2$.

Solution: With the notations above, assume that $e k_1 = e k_2 \in \mathcal{E}(V, X)$ and let us use g for this morphism. We have $f_1 e = f_2 e$ and hence $f_1 g = f_2 g$ and so there is a unique morphism $k \in \mathcal{E}(V, E)$ such that e k = g. Now both $k = k_1$ and $k = k_2$ satisfy this equation, hence $k_1 = k_2$.

(i) Prove that if a morphism t in **Rel** is a monomorphism, then the associated function fun(t) is injective.

Solution: We use 1 for a chosen set which has exactly one element: $1 = \{*\}$. Let $t \in \operatorname{Rel}(E, F)$ be a monomorphism. Let $x_1, x_2 \in \mathcal{P}(E)$ and assume that $\operatorname{fun}(t)(x_1) = \operatorname{fun}(t)(x_2)$. Let $s_i = \{(*, a) \mid a \in x_i\} \in \operatorname{Rel}(1, E)$ for i = 1, 2. For i = 1, 2, we have $ts_i = \{(*, a) \mid a \in \operatorname{fun}(t)(x_i)\}$ and hence $ts_1 = ts_2$ so that $s_1 = s_2$ since t is a mono. Therefore $x_1 = \operatorname{fun}(s_1)(\{*\}) = \operatorname{fun}(s_2)(\{*\}) = x_2$.

(j) (**) Complete the proof that the equalizer of θ and Id does not exist in **Rel**.

Solution: In what follows, to increase readability, we identify the sets $\operatorname{Rel}(G, H)$ and $\operatorname{Csl}(\mathcal{P}(G), \mathcal{P}(H))$ for all sets G and H, through the bijection fun(_).

Towards a contradiction, assume that this equalizer (E, e) exists in **Rel** so that E is a set and $e \in \mathbf{Csl}(\mathcal{P}(E), \mathcal{P}(W))$. Let $f \in \mathbf{Csl}(\mathcal{P}(E), C)$ be the unique CSL morphism such that e = c f (which exists because (C, c) is the equalizer of θ and Id in Csl).

Given $x \in C$, we can define a function $g_x : \mathcal{P}(1) \to C$ by $g_x(\emptyset) = \emptyset$ and $g(\{*\}) = x$ and it is clear that $g_x \in \mathbf{Csl}(\mathcal{P}(1), C)$. Moreover $\theta c g_x = c g_x$ because $x \in C$ and hence, since $c g_x \in \mathbf{Rel}(1, W)$, there is exactly one morphism $h_x \in \mathbf{Rel}(1, E)$ such that $e h_x = c g_x$. We set $h(x) = h_x(\{*\})$. In that way we have defined a function $h : C \to \mathcal{P}(E)$, which is completely characterized by

$$\forall x \in C \quad e(h(x)) = c(x) \,.$$

We prove that this function h belongs to $\mathbf{Csl}(C, \mathcal{P}(E))$. Let $A \subseteq C$. Since $(\mathcal{P}(E), e)$ is an equalizer in **Rel**, e is a monomorphism in **Rel** by Question (h) and hence, considered as a function, it is injective by Question (i). We have, using the definition of c, $e(h(\bigcup A)) = c(\bigcup A) = \bigcup A$ and $e(\bigcup h(A)) = \bigcup e(h(A))$ since e is a morphism in **Csl** and hence $e(\bigcup h(A)) = \bigcup A$. By injectivity of e, we have therefore $h(\bigcup A) = \bigcup_{x \in A} h(x) = \bigcup h(A)$ and hence $h \in \mathbf{Csl}(C, \mathcal{P}(E))$. We have ehf = cf = e and hence $hf = \mathsf{Id}$ since e is a mono. And cfh = eh = c and hence $fh = \mathsf{Id}$ since c is a mono.

This shows that f and h define an isomorphism in **Csl** between $\mathcal{P}(E)$ and C which is impossible since C has no prime elements whereas E has $\mathcal{P}(E)$ has prime elements.