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Intro: differentiation and addition



We have learned at school

i f(x+e)—f(x)

e—0 IS

f'(x) =

And later

f:E — F (where E and F are, say, Banach spaces)

is differentiable at x € E if
f(x+u)=rf(x)+(I-u)+o(]|ul])

where [ : E — F linear bounded.
And then | € L(E, F) is uniquely defined: | = f’(x) is the
differential (Jacobian etc) of f at x.

Because /- u € o(||u||) = I = 0 when | € L(E, F).



Leibniz rule

Take f : R x R — R (sufficiently regular) and define

g:R—-R
x — f(x,x)
Then
dg(x) _ 0f(x1,x) of (x, x2)
dx  Oxp (x) + Oxo (x)

This generalizes the usual Leibniz rule (uv) = v'v + uV/,
()" =57, (7 )u(k (n=k) etc.

Differentiation is inherently related to addition.



In the Differential A-calculus we have a differential application

rN-mMm:A=B TFN:A
rN-bM-N:A=B

and a differential substitution defined by induction on M, such that
if,x:AFM:Band 'E N : A then

MHx:AF 8—M -N: B
ox
Differential reduction:
M
DOAXA M) - N — AxA (86— - N)
X

where %—’\;’ - N is defined by induction on M.



The most important case in the definition of %—Aj - N is when
M= (P)Q:

I(P)Q
Ox

oP
Ox

Q-+ P (2.

N =( N)Q

which combines
® the Leibniz Rule because x can occur in P and in Q@

¢ and the Chain Rule because of the application (imagine x
occurs only in Q).



Reduction rule:

oM

DOAXA M) - N — Ax”A (E - N)

so to have subject reduction it seems that we need

FTEMy:A THEM:A
FI—M0+M1:A

allowing to add any two terms of the same type.



Consequence: non-determinism

If we have for instance a type o of booleans with

lFt:o N-f:o
then we must accept t + f as a valid term, with

Fr~t+f:o

meaning that the language is essentially non-deterministic.



In the semantics

So far, the categorical models C of the differential A-calculus were
(left-)additive categories.

Given f,g € C(A, B), there is a morphism f 4+ g € C(A, B).

~+ C is enriched over commutative monoids.



Coherent Differentiation

This is not a fatality!

Of course addition is required, but there is a (categorical, and then
syntactical) way of controlling it, without giving up determinism.

The possibility of such a theory appears in ...



... probabilistic coherence spaces (PCS)

A PCS is a pair X = (| X|, PX) where | X] is a set and
PX C (R>o)X! satisfying some closure properties.

® PX is convex,
® downwards closed,
® closed under lubs of monotonic w-chains

® | 3 technical condition to avoid oo coeffs.

They are a model of (probabilistic) A-calculi, LL etc, but not of
their differential extensions by lack of additivity.



Derivatives in PCSs

In the associated category Pcoh,, 1 is an object such that
|1 = {x}, P1 =[0,1] and a morphism f € Pcoh(1,1) is a power
series defining a function [0,1] — [0, 1]:

00 oo
f(x) = Z apx"  with Vna, € R>g and Z ap <1
n=0 n=0

so that f/(x) = >_2(n+ 1)an4+1x" has no reason to be a
function [0, 1] — [0, 1].

Example

f(x) =1—+/1—x, then f'(x) = 1/(2y/1 — x) is unbounded on
[x,1).




However

If x,u € [0,1] and x + u € [0,1] then we have

f(x) + f'(x)u < f(x +u) €]0,1]

because this sum is the beginning of the Taylor expansion which
holds in this model:

= 1
f(x+u) = me(")(x)u"
n=0 "~

and all coefficients are > 0. For any f € Pcoh,(X, Y).



In a PCS, some sums are allowed. . .

Convex combinations: if x,y € PX then %X + %y € PX.

Some non convex sums are also possible, for instance in the
cartesian product X & Y, we have

(x,0) +(0,y) =(x,y) e P(X & Y)=PX x PY
if xePX and y € PY.
Other non convex allowed sums come from differentiation:
f(x)+f'(x)-uePY

if x,u € PX are such that x+y € PX and f : PX — PY is an
“analytic function”, that is a morphism X — Y in the Kleisli
category Pcoh,.



...and some sums are forbidden!

For instance
P1e1)={(x0,x1) €R>o|x0+x1 <1}
in this object of booleans,
t=(1,0),f=(0,1)eP(1®1) and t+f¢P(11).

or simply 1 € [0,1] and 1+ 1 ¢ [0, 1].



Fundamental observation

There is a functor S : Pcoh — Pcoh which maps an object X to
an object SX such that

P(SX) = {(x,u) € PX?| x + u e PX}.

For instance P(S1) = {(x,u) € [0,1] | x + u < 1}.

We base our axiomatization on the existence of such a functor.



Summable categories



Definition (pre-summable category)

A pre-summable category is a tuple
(£7 S7 0,71, U)

Where

e [ is a category enriched over pointed sets (and the
distinguished morphism is always denoted 0);

® S: L — L is a functor which preserves the enrichment
(S0 =0);

® and 7, 1,0 : SX — X are natural transformations such that
7o and 71 are jointly monic.

If fo, i € L(X,SY) satisfy 7; fo =7 fi for j = 0,1 then fo = f.



Intuition

® SX is the objects of pairs (xp, x1) € X x X such that xp + x1
is well defined and € X;

® 71;: SX — X are the projections, 7;(xo, X1) = X;;
® and 0 : SX — X maps (xp, x1) to xp + x1.



Some terminology

We assume to have such a structure (£, S, g, 71, 0)

Definition (summability, witness, sum)

We say that fy, i € L(X,Y) are summable if there is
h e L(X,SY) such that 7; h = f; for j =0, 1.

Fact: when such an h exists it is unique (7, 71 are jointly monic),
we set (fo, f1)s = h, it is the witness of summability of fy and f;.

And then we set fy + fi = o (fo, fi)s, the sum of fy and f;.



Some simple observations

® 7o, m1 are summable with (mp, m1)s = ldsx and mg+ 71 = 0.

e If fo,fi € L(X,Y) are summable and / € L(U, X) and
re L(Y,V) then rfyl,rfil are summable with

(rfol,rfil)s =Sr(fo, fi)s!
rfol+rfil=r(fo+ )l

by naturality of 7, 71 and o.

Remark (main tool)

Use the fact that mg, 71 are jointly monic.

We introduce a few axioms to make this “partial addition” behave
as expected.



Commutativity

Axiom (Commutativity)

71, 7o are summable and 71 + 79 = 0.

Fact (consequences)

(m1,m0)s € L(SX,SX) is an involution.

If fo, fi € L(X,Y) are summable then fi, fy are summable with
h+fo=fh+h.

Intuitively: (71, m0)s(x0,x1) = (X1, %0)-



Neutrality

Axiom (Neutrality)

For any f € L(X,Y), f and 0 are summable and f + 0 = .
In particular we have two injections
to = (ldx,0)s, 1 = (0, ldx)s € L(X,SX)

Intuitively ¢o(x) = (x,0) and ¢1(x) = (0, x).



Witness

Associativity is more tricky. We split the condition in two pieces.

Axiom (Witness)
Let fj € L(X,Y) for i,j € {0,1} be 4 morphisms such that

® fjo, fj1 are summable for j = 0,1

® and fog + fo1, f10 + f11 are summable
then (foo, fo1)s, (fi0, fi1)s are summable.

So there is a witness for this summability:

{{fo0, for)s, (fi0, fi1)s)s € L(X,S?Y).



The canonical flip

Fact
There is exactly one morphism c € £(S?X,S?X) such that

Vi,jE{O,l} T Mj C=Tj Tj .

¢ = ((mo mo, ™o T1)s, (M1 o, T T0)S)S

exists by the previous axioms.

Fact
C2 = Ids2x.

Intuitively c((xo0, x01), (X10, X11)) = ((X00, X10), (%01, X11)).



Associativity

Axiom (Associativity)

The following diagram commutes

S2X < y §2X
SX

Remark (Intuition)

The sum of witnesses is performed componentwise:

(x00, X01)s + (X10, X11)s = (X00 + X10, Xo1 + X11)s



Fact (consequence)
If fj € L(X,Y) fori,j € {0,1} are such that
® fi, i1 are summable for j = 0,1
® and foo + fo1, fio + f11 are summable
then
® fo;, f1j are summable for j = 0,1
® and fyo + fio, for + f11 are summable
and (foo + fo1) + (fio + fi1) = (foo + f10) + (for + f11).

Associativity follows taking fio = 0.



Partially additive category

The category £ becomes a partially additive category in the sense
of partial monoids.

Remark

Partially additive categories do not suffice for our goal: the functor
S will be crucial for differentiation!



S is a monad

We have already ( = 1o = (ldx, 0)s € L(X,SX).

Using the axioms we also have
0 = (mo mo,m1 mo + 7o T1)s € L(S?X, SX).

(S,¢,0) is a monad on L.

Intuitively

Ox : S°X — SX

((x00, X01), (x10, X11)) = (X00, X10 + X01)

Notice that we forget xi3.



When L is an SMC



Distributivity

In all the situations we have in mind, £ is a symmetric monoidal
category with tensor product ® and tensor unit 1.

In that case one expects ® to distribute over 4+, when defined.
This requires an additional

Axiom (Distributivity)

Oxg=0
and
if fo, fi are summable then

® fy® g, ® g are summable
*and Hhvg+hovg=(h+hH)®g.



Strength

In particular 1o ® ldy, 71 @ Idy € L(SX @ Y, X ® Y) are
summable so we have strengths

WXy = (10 @ ldy,m ® Idy)s € L(SX ® Y,S(X @ Y))
4,0}(7y = (ldx ® 7o, ldx ® m1)s € LIX ®SY,S5(X ® Y))

turn S into a commutative monad.

Intuitively

WX y((x0x)®y)=(x0®y,xOy)
ox.y(x @ (Y0, 1)) = (X ® yo,x @ y1)



Commutativity of the monad

We have actually something stronger:

0 S 1
SX ®SY 2, §(X®SY) % $2(X @ V)

Yix, Yl lCX ®Y

S 0
S(SX® Y) oy S2(X ® Y)

Intuitively

(X0, x1) ® (0, ¥1) = ((x0 ® yo, X0 ® y1), (X1 ® y0, X1 @ y1))
(x0,x1) @ (¥0,¥1) = ((x0 ® y0,x1 ® ¥0), (x0 ® y1,x1 ® y1))



Induced symmetric monoidal structure

We then have

‘Px sy ‘Px Y

SXSY 2 §(X®SY) —% S2A(X ® Y)
‘Péx,vl l@(@v
SLPS)(,Y 2
S(SX ® Y) S2(X @ Y)
le
S(X®Y)

Intuitively

Lx,y 1 ((x0,x1) ® (y0,51)) — (X0 ® ¥0,% ® y1 + X1 ® ¥0)



Differential structure



As in differential LL, we consider differentiation as a structure of
the exponential.

So we assume moreover that

e [ is cartesian (T: terminal object, Xy & Xi: product,
pr; E,C(Xo&xl, ) <fb,f1> Eﬁ(y XQ&Xl) if
fi € E(Y Xo))

® [ is equipped with a resource modality (!_, der,dig, m® m?)

derx € L(1X,X) digx € L(!X,!!1X) comonad structure
ml e L(1,1T) mky € L(IX®!Y, (X & Y))

Seely isos, strong sym. monoidality



Preservation of products

We need a further property about S.

Axiom (Product)

The functor S preserves cartesian products, more precisely:
(Sprg, Spry) € L(S (Xo & X1),SXp & SX;)

is an iso.

This holds in all the LL-based examples we have in mind, because
in these examples S is a right adjoint.



The differentiation operator

In this setting (resource category with a summability structure), a
differential structure is a natural transformation

Ox € L(!SX,S!X)
satisfying some properties.

Remark (main idea)

Given f € L£i(X,Y), this will allow to define

Df = (Sf) dx € Li(SX,SY)
which will (intuitively) be the map (x, u) — (f(x), f'(x) - u).

We list the conditions to be satisfied by 0x



Second derivative: intuition

Let f € £i(X,Y), we have Df € £,(DX,DY)

f(x)
Df = (f .
(o u) = (F(x), ~ 2 )
We can apply D to Df, we get
dDf(x, u)

sz((Xa U)? (y7 V)) - (Df(X7 U), d(X, u) ) ()/7 V))



Remember Df (x, u) = (f(x), f'(x) - u).
By standard rules of calculus:

dDf(x, u) _ ODf(x, u) . ODf(x,u) ,

d(x, u) i) = ax 7 du
Py = D50, 709 0) -y
= (F'(x) -y, f"(x) - (v, )

IDFOCU) | — 9 ) () ) v



Finally we have, intuitively

D?f((x, u). (v, v)) = ((F(x), f'(x) - u),
(F10) -y, (%) - (u,y) + F(x) - v)

Notice that in the first 3 components, we have only 1st order
derivatives.



Distributive law

Axiom ( + )

0 is a distributive law between the monad S and the comonad !_ in
the foIIowing sense.

1IsX 2% six ISX Ox SIX
derxj lSderX digsxl ) 5 lSdigX
HSX —X5 I1S1X =X Slix
ISX 2% si1x ISX Ox SIX
\ TC'X 'GXT GIXT
1s2x 2%, si1sx 3% §21x

See John Power and Hiroshi Watanabe, Combining a monad and a
comonad, TCS 2002 for this kind of dist. law.



Intuition for the dist. law

The first two diagrams allow to define a functor

D: L — L
X — SX
(F 11X = Y) = ((SF) 8x : 1SX — SY)

Intuitively, and in probabilistic coherence spaces for instance:
e f € Ly(X,Y) means that f is an analytic function X — Y
® Df € Pcoh((X, Y) is the (x, u) — (f(x), f'(x) - u)

so this functoriality means that the chain rule holds.

And that the differential of a linear morphism is the morphism
itself: D(f derx) = (Sf) dergx for f € L(X,Y).



The two next diagrams allow to lift the monad (S, (,0) to L.
For Ox € Li(S?X,SY) = L(1S?X,SY): we take Ox derx.

These diagrams allow to prove that 6 is a natural transformation
on Li. If f e Li(X,Y):

D2Xx ., DX

o o

D2y - Dy

And similarly ¢ is natural in L.



Intuition: linearity of the differential

Remember:

Ox((x0, to), (x1, u1)) =(x0, to + x1)
D?f((x0, wo), (x1, u1)) = ((F(>0), f'(x0) - o),
(f'(x0) - x1, f"(x0) - (0, x1) + f'(x0) - u1)

The commutation means:
Df(xo, up + x1) = (f(x0), f'(x0) - o + f'(x0) - x1)

that is f'(x0) - (up + x1) = f'(x0) - uo + f'(x0) - x1.
Naturality of ¢ in £y: f'(x)-0=0.



Locality

To represent one of the differential situation we are interested in,
this distributive law has to satisfy additional axioms: Locality,
Leibniz and Schwarz.

Axiom (Locality)

ISX —2 ., sIX

!WA!XA

Only for g, not for !



Intuition
Again we use g for mo derx € L;(DX, X).

The diagram means that g is natural in L. If f € £i(X,Y):

DX s X

Y

DY "> Y
This corresponds to the intuition that

Df(x,u) = (f(x), f'(x) - u)

Remark

m1 € L£i(DX, X) also exists but is fundamentally not natural in £,
(of course 71 is natural in £).



Leibniz

Is expressed as a “monoidality” condition (to simplify we assume
S(X& Y)=SX&SY)

Axiom (Leibniz)

ISX @15y 2%, six g sly 2% s(1X @ 1Y)

> 2
msx,syl lsmx,y

IS(X & Y) L5 SIX & Y)

+ a “0O-ary version”.



Intuition

Given f € Li(X & Y, Z), this commutation gives us an expression
for Df in terms of the two differentials Ox and Jy.

Given ((x,y), (u,v)) € S(X & Y),
that is, (x,u) € SX and (y,v) € SY,

df(x,y) , o 2fxy) o Oflxy)
day) W= o it T,

In the diagram, + is implemented by Lix 1y.



Schwarz

Axiom (Schwarz)

IS2X —%5 SISX —2 S2IX

o o

1IS2X =X, SISX 25 §21X



If f € L£i(X,Y) then
D?f = (S%f) (S dx) Osx

so this diagram means that c is natural in £;:

D2x P, p2y

x| Jev

D2x -Pf, p2y

where we use also cx for cx dergay.



Intuition

Remember that

cx (%0, to), (x1, u1)) = ((x0, x1), (uo, u1))
D?f((x0, o), (x1, u1)) = ((f(x0), F'(x0) - o),
(f (Xo) X1, f”(Xo) . (Uo,Xl) + f/(X()) . u1)

so this naturality means that

D*f((x0, x1), (w0, u1)) = ((f(x0), f'(x0) - x1),
(f’(X()) - U, f//(Xo) . (UO,Xl) + f/(Xo) . u1)

((f(x0), f'(x0) - x1), (f'(x0) - o, " (x0) - (x1, u0) + F'(x0) - u1)

X0);
((f(x0), f'(x0) - x1), (f'(x0) - o, " (x0) - (10, x1) + F'(x0) - u1)



So taking u; = 0 we get

f"(x0) - (x1, o) = f"(x0) - (o, x1)

which is the crucial property that the second derivative is a
symmetric bilinear function, often called Schwarz lemma.
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Short recap



Summability structure

e [ is a category with 0-morphisms

S: L — L is a 0-preserving functor
® 19, 71,0 : SX — X are natural transformations
® 7o,y are jointly monic

fo, i € L(X,Y) are summable if there is (fy, f1)s € L(X,SY)
with 7; (fo, fi)s = f;, and then fy + 1 = o (fy, fi)s.

+ axioms to turn £(X, Y) into a partial commutative monoid.

In particular c € £(S2X,S2X) the standard flip with

TP Ty C=Tj .

S inherits a monad structure (S, ¢, 6).



Differentiation

L is assumed to be a resource category (cartesian SMC with a
resource comonad aka. exponential, with Seely strong monoidality).

The differential structure is a natural transformation
Ox € L(!SX,S!X) which satisfies some futher commutations:

® it is a distributive law between the monad S and the comonad
I_: Chain Rule and Linearity (of the derivative)

® | ocality
® | eibniz
® Schwarz.

Then one defines the Differentiation Functor D : £, — L, by
DX =SX and if f € £;(X,Y) = Li(!X,Y) then
Df = (Sf) 0x € Li(DX,DY).



Canonical structure



A special, very common, case
We assume that £ is monoidal closed (convenient though not
strictly necessary) so that the functor
-®l
where | =1 & 1, has a right adjoint S;.

SIX =(l - X)
Sif=(l—f)e L(l - X,| =)

for f € L(X,Y).

We still assume that £ has zero-morphisms.




Two natural questions

Remark

In (probabilistic) coherence spaces, S is defined exactly in that way.

® When does this definition give rise to a summability structure?

® \What does the differential structure boil down to in this
setting?



We have three morphisms

7o = (Id,0) € £(1,1)
71 = (0,1d) € £(1,1)
A = (id,Id) € £(1,1)

which induce natural transformations 7o, 71,0 € L(S X, X) by
“precomposition”.

For instance mq is

(Il—X) 5 (1 -X)®1 €70, (| o X)®1 <% X



Summability as a property

Definition

L is canonically summable if (S, 7o, 71, 0) defined in that way are
a summability structure.

Remark (a property of £, not a structure)

This is a property of £, not an additional structure on L.

In particular we need 7g, 71 to be jointly epic.



What do summability and sums become?

Remember that £(X,Y) ~ L(1,X — Y).

x0,x1 € L(1, X) are summable if there is h € L(l, X) such that

X = h7T,'

and then xo +x; = hA € L£(1,X).



Canonical Witness Axiom

If fo, fi € L(I, X) are such that fy A, 1 A € L(l, X) are summable,
then so are fy, fi. That is, up to L(I, X) ~ L(1,] — X):

if o, fi, f € L(l,X) are such that
fA=f7;fori=0,1
then there is h € L(I ® |, X) such that
fix=h(mol)e L(1®],X)

where )\ is the can. isom. 1 Q| — .

Then fp=h(l® A). Because Ty, 71 are jointly epic.




If 7o, 1 are jointly epic, then (S, mo,m1,0) (as defined above) is a
summability structure on L iff the Canonical Witness Axiom holds.




| is a commutative comonoid

Thanks to the axioms we can define
LeL(Llal)

uniquely characterized by

Lio = Tg ® o and Eﬁl =T R T+ 71 ® T

(I, pro € £(1,1),L) is a commutative comonoid in L.

pro € L(1 = (1 & 1),1) is the first projection.



The commutative monad structure of S;

We have seen that S| has a structure of commutative monad.

The monad (S, ¢, 0) is induced by the commutative comonoid
structure (prg, L) of I.

For instance @ = curf : (I —o (I —o X)) — (I — X) where f is

(= (= X))ol 45 (| (- X))ol

J(ev@ld

X ev (- X)®|




Differentiation as a !-coalgebra (canonical case)



|_and its coalgebras

We assume that L is a cartesian resource category (cartesian
product &, exponential comonad !_, Seely isos etc).

A l-coalgebra structure on X € L is a d € L(X,!X) such that

X —9451x X —9 5 1x

PN

IX —9, nx

These colgebras form the Eilenberg-Moore category £' where
X —451x
feL((X,d),(Y,e) if fl l!f in L.

Y —2= 1Y



| . .
L’ is cartesian

Due to the fact that £ is a resource category (®, &, Seely isos):

L' is cartesian, with terminal object
(1,4°:1—11)

and the cartesian product of (Py, do), (P1,d1) € L' is
(Po ® P1, i (do ® dh))

2
Po® Py 2% 1py @ 1P, s 1(Py® Py)

Projection pr§ (and similarly for pry):

d ®!'10
Po® P, 2204 1py@ 1P, =27 Py IT ~ Py

Uses the lax symmetric monoidality structure (1, u?) of !_.



Chain Rule and coalgebra

There is a bijective correspondence between

® the !-coalgebra structures on |

® and the distributive laws between S| and |_ in the sense of the

Chain Rule:
1ISX 2% s1x ISX Ox SIX
dersx\/‘ lS derx digsxl ‘ ls digy

nsx —2%, 1s1x 2% sinx



Coalgebra ~» Chain Rule

Suppose we are given § € L(I, ), then for any object X we can
define dx = curf € L(1S X =!(l — X),S!X = (I — X)) where
fis

(= X) @1 2955 101 o X) @ 11 5 1((1 = X) @ 1) 2% 1X

/@(,Y e L(IX@!Y, (X ® Y)) is the lax-monoidality structure of !_
wrt. ®.



Chain Rule ~~ Coalgebra

Conversely assume we are given dx € L(!S;X,S;1.X) for each
X € L, we have in particular, taking X = I

-1 0 ! A Id
| N g M g el

o®ld

(l—-el ——— 1

(=Y

where 110 € £(1,!1) is the “unit” of the lax-monoidality and
Al € L(1®1,1) (the canonical iso).



A natural question

So assume we are given a coalgebra structure 6 € L(I, ).
What conditions must satisfy § for ensuring that the corresponding
distributive law (Ox)xer satisfies the additional conditions

e Linearity (second part of the dist. law)

® Local

® Leibniz

® Schwarz?

The answer is surprisingly simple.



Linearity and Leibniz

Linearity and Leibniz boil down to

| % o [ i 1
prol llpro E\L l't
0 2
1 lo1 225 el -2 11e1)
that is
term. obj.

—~—

prg € E!((Ivd)v (L:UO))

Le£((1,6),0,8) ® (1,8))
e

cart. prod.



comonoid from the coalgebra

This means that we have

|5 I 2
P"ol X l!O EJ{ ) lA
_ 2
1 m0) T || derj®der) Nl f ) |(| & |

1. .
because L’ is cartesian.

Remark

As a consequence, a canonically summable resource category where
_is the free exponential (roughly speaking, a Lafont category
which is canonically summable) has exactly one differential
structure (in our sense).

Related to a result of Blute, Cockett, Lemay and Seely (in additive
resource categories).



Locality corresponds to

| —2 4
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that is 1o € £'((1, u°), (1,6)).
And Schwarz straightforwardly holds.



Remark: the Kleisli category of S,

It turns out to be exactly the same thing as the category L£[(1,0)]
of free comodules of the coalgebra (I, ).
Theorem (Girard)

If L is a model of LL then L[(1,0)] is a model of LL. Very likely
conjecture: it is also a summable differential model of LL.

The objects of L[(l,0)] are those of L.

feL[(l,0)|(X,Y)if f =(fh,fi) € L(X,Y) is a summable pair of
morphisms. Composition:

(g0, 81) (o, f1) = (g0 fo, 80 L + &1 fo) -

Intuition: “g1 1 = 0", L[(I,9)] is a kind of infinitesimal extension
of L.



To summarize

In the canonical case, for a closed resource category L:
@ summability boils down to the Canonical Witness Axiom
about | =1 & 1 (+ the fact that 7o, 71 are jointly epic);

® and the differential structure boils down to a coalgebra
structure on |

such that the morphisms pry € £(1,1), 1o € £(1,1) and
L e L(I,1®1) are coalgebra morphisms.

Remember that these 3 morphisms arise from the summability
assumptions.



Concrete instance |: Coherence Spaces



A coherence space is
E = (E],<E)

where |E| is a set and < is a binary symmetric and reflexive
relation on |E|.

The domain of cliques:
CI(E) ={x C |E||Va,a € x acg d'}

ordered by C.



Morphisms

® |[E— Fl=|E| x|F|
b (a, b) CE-oF (é)/7 b,) if

acpd = (bcpb andb=b =a=2)
And then

Coh(E, F) = CI(E — F)



Some notations for Coh

e Identity: Idg = {(a,a) | a € |E|}
e Composition: if s € Coh(E, F) and t € Coh(F, G) then

ts={(a,c) € |E| x|G||3be|F|(a,b)€sand(b,c)ect}
€ Coh(E, G)

® Application to a clique: if s € Coh(E, F) and x € CI(E) then
s-x={be€|F||a€xand (a,b) s} e CI(F).



Coh is cartesian

e Terminal object T = (0, 0).

e Cartesian product |Eg & Ei| = {0} x |Eg| U {1} x |E4|
(i, a) CE&E (_], b) if / :j = a ZE; b.
® The projections are

pr; = {((i,a),a) | i € {0,1} and a € |E;|} € Coh(Ey & Ei, E;).



If t; € Coh(F, E;) then
(to, t1) = {(b,(i,a)) | i € {0,1} and (b, a) € t;}
S COh(F, Eo & El) .

Remark
CI(T) = {0} and CI(Ey) x CI(E1) ~ CI(Ep & E;) by

(x0,x1) — {0} x xp U {1} X xq .



Coh is monoidal closed

e Unit 1 = ({x},=).

e Tensor product |Ey ® E1| = |Ep| x |E1| and
(a0, a1) SreE (a),a)) if aj g a for i =0, 1.

° |ft; € COI’I(E,‘7 F,') for i = 0,1 then

to ® t1 = {((a0, a1), (bo, b1)) | (ai, b;) € t; for i = 0,1}
€ Coh(Ey ® E1, Fo® F1).

Monoidal closedness:

Coh(G ® E, F) ~ Coh(G,E — F).



Coh as a resource category

e |IE| = the set of all finite multisets m = [ay, ..., a,] with
aj € |E| and Vi,j a; =g a;. It is a uniform exponential.

e moegmifVaemadem mogm.

® And it t € Coh(E, F) then

't ={([a1,.--,an],[b1,---, bn]) |
neN, [a1,...,an] € |!E|
and (aj, bj) € t fori=1,...,n}
€ Coh(IE, IF).

This is the free exponential. There is another one where |!E]| is
made of sets instead of multisets; it is not compatible with the

differential structure.




Coh is canonically summable

® Coh has 0-morphisms: 0 = () € Coh(E, F).
e |=1&1sothat|l|={0,1} and 0 < 1.
® The injections 7; = {(*, 1)} € Coh(1,1) are jointly epic.

s € Coh(l, E) is fully determined by the pair

s-{0},s- {1} € CI(E)
such that

s-{0}ns-{1}=0.



The Can. Witness Axiom holds in Coh

Let tg, t1,t € Coh(l, E) such that
tiA=tw fori=0,1.
This means t; - {0,1} = t- {i} for i = 0,1. That is:
to-{0,1} Uty -{0,1} € CI(E) and to - {0,1} Nty - {0,1} = 0.

Then let s = {((/,J),a) | (i,a) € tj} C [ ® | — E|, we have

seCoh(I® 1 E).



The functor S; : Coh — Coh is given by
SIE=(l—-E)
so that |S|E| = {0,1} x |E| with
(iba)cse (@) ifacgd andi# "= a#4a.
Hence
CI(S|E) ~ {(x0,x1) € CI(E)? | x Uxy € CI(E) and xg Nxy = 0} .

Two cliques xp, x; of E are summable if xo U x; € CI(E) and
xo N x1 = 0. In that case we use xg + x1 for xg U x7.




The commutative comonoid structure of | is given by
pro = {(0, %)} € Coh(l,1)
L ={(0,(0,0)),(1,(1,0)),(1,(0,1))} € Coh(l,I®1).

Remember it induces the monad structure (¢ € Coh(E,S|E) and
O € COh(S|2E,S|E)

As expected

0c : S’E — S|E

((x00, X01), (x10, X11)) —> (X00, X10 + X01)
up to

CI(S?E) =~ {((x00, %01), (x10, x11)) | X00 + X01 + Xx10 + x11 € CI(E)}.



The differential structure of Coh

We define 6 C || —o !l

0 =A{(0,n[0]) | n e N}U{(1,n[0] +[1]) | n € N}

nXx

where n[a] = [a,...,a]. It is easy to check that § € Coh(l,!l).



0 is a coalgebra

The main thing to check is

| —2
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that is, given i € {0,1} and M € Mg, (Mi5n({0,1})),

(i, M) €166 < (i, M) € dig, 6

where
dige = {(m,[m1,...,my]) € NE| x |NE[ | m=my +



main case

The main case is when i = 1.

(1, M) € 16§ means Jk € N such that
(k[O] + [1], M) € 16
that is:

M = [mq,...,mgy1] with (O,m;) € dfori=1,...k
and (1,my41) €0

that is: 3k € Ndny, ..., ngy1 €N

M = [m[0]... . n[0], mis1[0] + 1]



And (1, M) € dig; 6 means 3k € N such that
(k[0] + [1], M) € digy
that is:
M = [my,...,mj] with my +--- + m; = k[0] + [1]
thatis: 3/ € NT3ny,...,n, €N
M = [n[0], ..., n;—1[0], n;[0] + [1]]

The diagram commutes!



The differential distributive law

Remember that § induces a distributive law
O = curu € Coh(!S|E,S|!E) where

ul(l - E)®l—=IE
2
(Il - E)®]1 ELELR (Il - E)® !l £ (I - E)®]) lev 1 E
Notice that u%,F € Coh(lE®!F,)(E®F))is

MzE,F = {(([317"'73"]7[[317" 'vbn])’ [(alvbl)v"‘v(ambn)]) |
neN, [a1,...,as] € |'E| and [b1,..., bs] € |'F|}



(1= E)@ !l 25 1((1 — E) @ 1) 2% 1E

is

{(([(il, al), ey (ik, ak)], [il, ooy ik]), [81, ceey ak]) ’
k€N, it,... 0 €{0,1} and [(i, a1), ..., (ik, ax)] € |11 — E)|}

and [(i1,a1),--., (i, ak)] € |!(I — E)| means that

Vj,j/ aj Cg ay and j #_j/ = aj # aj.



1d®d
LN

(1 — E)® 1 (Il — E) @ !l

{((p,0),(p, n[0])) [ n €N, p e CI(l — E)}
U{((p, 1), (p, n[0] + [1])) | n €N, p € CI(I — E)}



SO U =

(Il — E)® 1 4% 1(1 — E)

is

u= {(([(07 al)a ) (0’ ak)],O),

Sl 25 (1= E)@l) =% 1E

[al ..... ak]) ‘

k € Nand [a,...,a] € |lE|}

U{(([(O’ al) 7777 (O)ak)’(lvak-‘rl)]vl))[al """ 3k+1]) |
k € Nand [ag,..., ak+1) € |'E| and ak41 ¢ {a1,..., akt}



Expression of Og

85 = {(([(0 a1) ..... (0 ak)] (O [81 ..... ak]) ’
k € N and [ay,..., ax| € |'E|}
U ({10, a1), -+, (0, a), (1, ak41))s (1, [an, - -, k) |
k € Nand [a1,...,aks1] € |'E| and ag41 ¢ {a1,...,a3k}}

€ Coh(!(l — E),1 — 1E).



The Kleisli category Coh;

Object: those of Coh and Coh,(E, F) = Coh(!E, F).
s € Cohy(E, F) induces a stable function
s:CI(E) — CI(F)
x — {b e |F||3Ime Mgzy(x) (m,b) € s}

Different s’s can induce the same stable function: s forgets about
the multiplicities in multisets.

If s1 ={([a], b)} and so = {([a, a], b)} then § = ;.




Differentiation on Coh;

Given t € Coh((E, F) = Coh(!E, F), remember that
Dt = (St) O € Coh(!S|E = (I — E),S)'E = (I — IF)).
Notice that

St = {((i,m),(i,b)) | i € {0,1} and (m, b) € t} .



So

Dt = {([(0,a1), .-, (0,ak)], (0, 0)) | ([ax, . - -, a], b) € 1)}
U{([(Oval) """ (O,Qk),(l,ak+1)],(1,b)) |
([a1,- - - ak,ak+1), b) € t) and ax41 ¢ {a1,. .., ax}}



The stable derivative

Remember that
CI(SIE) ~ {(x,u) | xUu e CI(E) and xNu=0}.
In that way we get the stable function

Dt : CI(S|E) — CI(S|F)
(x, u) = (t(x), t'(x) - u)

where

t'(x)-u={be|F||3me Mgn(x), a€ u (m+][a],b) € t}



Remark
If t; = {(i[a],a)} for i =1,2 we get

tn(0)-{a} = {a}
t(0)-{a} =0

whereas t; = t. The derivative is not associated with the stable
function itself.

In some sense this derivative "does not see mutiplicities”. This can
be remedied using non-uniform coherence spaces.



Coherent Differentiation (1)

Thomas Ehrhard
IRIF, CNRS and Université de Paris

November 28, 2021



The joint “epicness” axiom is necessary



Remember that we required L to satisfy the following.

The morphisms 7,71 : 1 = 1 =1 & 1 are jointly epic, that is: if
fo, 1 1 | — X satisfy

fomi=fHm for i=0,1

then fop = f1.

This is not always true.



The category of pointed sets

Pointed set: a set X together with a distinguished 0x € X.
Morphisms: functions f : X — Y s.t. f(0x) = Oy.

This category is cartesian:
X&Y =X xY with Oxgy = (Ox,0y).

And monoidal closed
XY ={(x,y) eXxY|x=0x<y=0y}

and Oxgy = (0x,0y) (smash product). The ®-unit is 1 = {*,01}.

Remark

It is even a resource category: set !X = {(0,0)} U {1} x X, and
0ix = (0,0).




Then the injections 7,71 : 1 — 1 =1 & 1 are given by

70(01) = (01,01) 7o(*) = (*,01)
71(01) = (01,01) 71(*) = (01, %)

If f,g:1&1— Y satisfy f; = g7; for i = 0,1 we can still have
F (%) # g(*, %).



The CWA is necessary



Canonical Witness Axiom

Joint epicness of my, 1 and CWA are the only conditions we need
in the canonical case to get a summability structure.

If fo, i € L(I, X) are such that fy A, 1 A € L(I, X) are summable,
then so are fy, fi. That is, up to L(I, X) ~ L(1,] — X):

if fo, i, f € L(l, X) are such that
fA=fw:1—Xfori=0,1

then there is h € L(1 ® |, X) such that
fix=h(m®l)e L(1®], X)

where \ is the can. isom. 1 Q| — .



Normed vector spaces

The CWA doe not always hold.
Let \V be the category

® whose objects are the finite-dimensional R-vector spaces V
equipped with a norm ||_||v

® and a morphism f : V — W is a linear map such that
Vv eV [If(V)|lw < |v|lv, thatis ||| <1,
where

Il = sup [If(v)]w -

Iviiv<i



N is cartesian with ||(u, v)||vew = max(||u]|, ||v]|) for
(u,v) e V& W=V xW.

N is an SMCC with ||v @ w|vew = ||v||||w]| for v € V and
we W.

The unit of ® is 1 = R with ||r| = |r].

V' — W is the space of all linear maps V — W with the norm
|£]lv—w = ||f]| already defined.



Joint epicness axiom holds in .
Then the functor S|V (induced by I) is given by
SV=(—-V)=VxVand

[(u, v)lls;y = sup [lau+ bv[lv
a,be[—1,1]

So u,v € V are summable if Va, b € [-1,1] |lau+ bv|v < 1.
In R:
® —1/2 and 1/2 are summable since [|(=1/2,1/2)||sr =1
® —1/24+1/2=0 and 1 are summable

® but 1/2 and 1 are not summable.



~» the CWA does not hold in N

CWA expresses not only associativity of (partial) + but also some
form of positivity of the elements of L(X, Y).




Recap of the differential structure



Assume that £ is a canonically summable resource category, that
is:

® 7o, 71 € L(1,1 =1 & 1) are jointly epic

® and the CWA holds.

Remember that | has a commutative comonoid structure given by
pro 11 —1 L:il=l®l
with

L7 = 7o ® 7o LT =T @71 + 71 ®To

Remember that + is just a notation for a composition with
A= (ldy,Idy) : 1 — 1.



Differential structure

In this setting, a differential structure is a !-coalgebra structure
d € L(1,!1) such that

® BrO € ‘C!((|76)’ (17N0))
e LeL'((1,6).(,o) @ (1,6) = (1®1,4* (3 ® 5)))
* o € L'((1,1°).(1,9)).

If L is a Lafont resource category which is canonically summable,
then L has exactly one differential structure.

Idea: 0 is uniquely determined by (prg, L).

Lafont resource category: for each X € L, I X is the free
commutative comonoid “cogenerated” by X.



Coherence spaces



A coherence space is
E = (E],<E)

where |E| is a set and < is a binary symmetric and reflexive
relation on |E|.

The domain of cliques:
CI(E)={xC |E||Va,d € |E| acg d}

ordered by C, it is a cpo.



Morphisms

® |[E— Fl=|E| x|F|
b (a, b) CE-oF (é)/7 b,) if

acpd = (bcpb andb=b =a=2)
And then

Coh(E, F) = CI(E — F)



Some notations for Coh

e Identity: Idg = {(a,a) | a € |E|}
e Composition: if s € Coh(E, F) and t € Coh(F, G) then

ts={(a,c) € |E| x|G||3be|F|(a,b)€sand(b,c)ect}
€ Coh(E, G)

® Application to a clique: if s € Coh(E, F) and x € CI(E) then
s-x={be€|F||a€xand (a,b) s} e CI(F).



Coh is cartesian

e Terminal object T = (0, 0).

e Cartesian product |Eg & Ei| = {0} x |Eg| U {1} x |E4|
(i, a) CE&E (_], b) if / :j = a ZE; b.
® The projections are

pr; = {((i,a),a) | i € {0,1} and a € |E;|} € Coh(Ey & Ei, E;).



If t; € Coh(F, E;) then
(to, t1) = {(b,(i,a)) | i € {0,1} and (b, a) € t;}
S COh(F, Eo & El) .

Remark
CI(T) = {0} and CI(Ey) x CI(E1) ~ CI(Ep & E;) by

(x0,x1) — {0} x xp U {1} X xq .



Coh is monoidal closed

e Unit 1 = ({x},=).

e Tensor product |Ey ® E1| = |Ep| x |E1| and
(a0, a1) SreE (a),a)) if aj g a for i =0, 1.

° |ft; € COI’I(E,‘7 F,') for i = 0,1 then

to ® t1 = {((a0, a1), (bo, b1)) | (ai, b;) € t; for i = 0,1}
€ Coh(Ey ® E1, Fo® F1).

Monoidal closedness:

Coh(G ® E, F) ~ Coh(G,E — F).



Coh as a resource category

e |IE| = the set of all finite multisets m = [ay, ..., a,] with
aj € |E| and Vi,j a; =g a;. It is a uniform exponential.

e moegmifVaemadem mogm.

® And it t € Coh(E, F) then

't ={([a1,.--,an],[b1,---, bn]) |
neN, [a1,...,an] € |!E|
and (aj, bj) € t fori=1,...,n}
€ Coh(IE, IF).

This is the free exponential. There is another one where |!E]| is
made of sets instead of multisets; it is not compatible with the

differential structure.




Coh is canonically summable

® Coh has 0-morphisms: 0 = () € Coh(E, F).
¢ |=1&1sothat|l|={0,1} and 0 < 1.
® The injections 7; = {(x*, i)} € Coh(1,1) are jointly epic.

s € Coh(l, E) is fully determined by the pair

so =5-{0},s1 =s- {1} € CI(E)



Moreover, since 0 ~g 1 (which means 0 =g 1 and 0 # 1) we have
soUs;i €CI(E) and soNsp =10

Conversely if xg, x1 € CI(E) satisfy xo Ux; € CI(E) and xoNx3 =0
then

({0} x x0) U ({1} x x1) € Coh(l, E)



Summability in Coh

We have seen that:

Fact
X0, X1 € CI(E) are summable in E iff

XoUXx1 € C/(E) and xgNx31=0.

RENEILS

Each model of LL has its own notion of summability.



The CWA holds in Coh

Up to iso:

CI(S|E) = {(x0,x1) € CI(E)? | xo Uxy € CI(E) and xp N x; = 0}

Up to this iso, we have

0= (0,0)
(%00, X01) U (x10, x11) = (X00 U X10, X10 U X11)
(%00, X01) N (x10, x11) = (X00 N X10, X10 N X11) -



Summability in §|E

So (X007X01), (X10,X11) S C|(5|E) are summable in S|E if

(x00 U x10, x10 U x11) € CI(S|E)
(x00 N x10, x10 N x11) = (0, 0)

That is

Xo0 U X10 U X130 U X711 € C|(E)
(x00 U x10) N (X10 U X11) = X00 N X10 = X10 N X11 = 0)

that is (I,_j) ?é (I.,,j,) = X,‘j mX,'/j/ = @



Assume that

® (xo0, X01); (x10, x11) € CI(S|E) and

® (xpo U xo1, x10 U x11) € CI(S|E).
Then

® Xp0 N xo1 = x10 N x11 = 0)

® (x00 Uxo1) N (x10Ux11) =0

® x00 U xp1 U x10 Uxy1 € CI(S|E)
that is

® x00 U xp1 U x10 Uxy1 € CI(SE)

o (i,J) # (")) = xij Nxijr = 0.
that is (x00, x01), (x10, X11) € CI(S|E) are summable in S|E.



We already know that Coh has a unique differential structure
wrt. 1.

The commutative comonoid structure of | is given by
pro = {(0, %)} € Coh(l,1)
L ={(0,(0,0)), (1, (1,0)),(1,(0.1))} € Coh(l, I ®1).

Remember it induces the monad structure (¢ € Coh(E,S|E) and
O € COh(S|2E,S|E)

As expected for ((xo0, x01), (x10, x11)) € CI(S?E) we have

6 - ((x00, x01), (X105 X11)) = (X00, X10 + X01) € CI(S/E)



The differential structure of Coh

We define 6 C || —o !l|:

6 ={(0,n[0]) | n € N} U{(1,n[0] +[1]) [ n € N}
where nfa] = [a,.. ., a].
d € Coh(l,!) because
e moy m forall mom' € |l
e and n[0] ~ig n'[0] 4 [1] for all n,n" € N.



0 is a coalgebra

The main thing to check is

| —9%

||

.
eI T

that is, given i € {0,1} and M € Mg, (Mi5n({0,1})),

(i, M) €165 « (i, M) € dig, 6

where
dige = {(m,[m1,...,my]) € NE| x |NE| | m=my +



main case

The main case is when i = 1.

(1, M) € 16 6 means 3k € N such that
(k[O] + [1], M) € 16
that is:

M = [mq,...,mgy1] with (O,m;) € dfori=1,...k
and (1,my41) €0

that is: 3k € Ndny, ..., ngy1 €N

M = [m[0]... . n[0], mis1[0] + 1]



And (1, M) € dig; 6 means 3k € N such that
(k[0] + [1], M) € digy
that is:
M = [my,...,mj] with my +--- + m; = k[0] + [1]
thatis: 3/ € NT3ny,...,n, €N
M = [m][0], ..., n—1[0], n,[0] + [1]]

The diagram commutes!



The induced differential dist. law

Remember that § induces a distributive law
O = curu € Coh(!S|E,S|!E) where

ul(l - E)®l—=IE
2
(Il - E)®]1 ELELR (Il - E)® !l £ (I - E)®]) lev 1 E
Notice that u%,F € Coh(lE®!F,)(E®F))is

MzE,F = {(([317"'73"]7[[317" 'vbn])’ [(alvbl)v"‘v(ambn)]) |
neN, [a1,...,as] € |'E| and [b1,..., bs] € |'F|}



85 :{(([(0, al) ..... (0, ak)], (0, [31 ..... ak]) ‘

k € Nand [ay,..., ax] € |'E|}
U{(([(O7 31) 7777 (0,8k),(1,3k+1)],(1,[31 7777 ak+l]) |
k € N and [31 ..... ak+1] € ||E’ and k1 ¢ {31 ..... ak}}

€ Coh(I(I — E),| — 1E).



The Kleisli category Coh;

Object: those of Coh and Coh,(E, F) = Coh(!E, F).
s € Cohy(E, F) induces a stable function
s:CI(E) — CI(F)
x — {b e |F||3Ime Mgzy(x) (m,b) € s}

Different s’s can induce the same stable function: s forgets about
the multiplicities in multisets.

If s1 ={([a], b)} and so = {([a, a], b)} then § = ;.




Differentiation on Coh;

Given t € Coh((E, F) = Coh(!E, F), remember that
Dt = (St) 0 € Coh(!S|E = (I — E),S|F = (I — F)).
Notice that

St = {((i,m),(i,b)) | i € {0,1} and (m, b) € t} .



So for t € Li(E,F) = Coh(!E — F) we have

Dt ={([(0, a1),. .., (0,ax)],(0,b)) | ([a1,-- -, agl, b) € t)}
U {([(07 31), s (07 ak)’ (17 ak+1)]7 (17 b)) ’
([a1,- - - ak, ak+1], b) € t) and axy1 & {a1,...,ak}}

€ Li(SIE,S|F) = Coh(I(l — E) — (I — F)).



The stable derivative
Remember that
CI(SIE) ~ {(x,u) | xUu e CI(E) and xNu=0}.
In that way we get the stable function

Dt : CI(S|E) — CI(S/F)
(x, u) = (t(x), t'(x) - )

t'(x)-u={be|F||Ime Msn(x), a€ u (m+][a],b) € t}

Remark

In such an (m, a) we have a ¢ supp(m) since supp(m) C x, a € u
and x Nu = 0.



Local coherence space

Given x € CI(X), one defines a coherence space E; by
® |Ei|={be€|E||Va€E x a~g b}
e acg difacegd.

Then for t € Coh(E, F) we have

t/(X) S COh(EX, F/t\(x))

RENEILS

There is a dependent type intuition: the type of t’(x) depends on
X.

However this point of view hardly reflects the stability of t/(x)
wrt. x.

Whereas the compound construction Dt does in a very simple way.



Remark
If t; = {(i[a],a)} for i =1,2 we get

t(0)-{a} = {a}
t(0)-{a} =0

whereas t; = tp. The derivative stable function Dt is associated
with t and not the stable function t.

In some sense this derivative “does not see mutiplicities”. This is
due to the uniformity of the exponential. NB: there are
non-uniform coherence spaces. . .



Probabilistic Coherence Spaces



Probabilistic Coherence Spaces (PCS)

X = (|X],PX)

|X| is a set (usually at most countable)
PX C (Rx0)!

Va € |X] 0 < sup,cpx Xa < 00

PX is |-closed (for the pointwise order)

PX contains the (pointwise) lub of any increasing w-sequence
in PX

x,y € PX and A€ [0,1] = Ax+ (1 = \)y € PX



Morphisms

X —o Y defined by:
° X — Y[=[X][x]Y]
e and t € (Rxo) XXl is in P(X —o Y) if

Vx e PX t-xePY

where t - x = (ZaE|X| ta,bXa)be|y| € (Rzo)m-

X —o Y so defined is a PCS.

Pcoh(X, Y) = P(X — Y).



Notations

¢ If s € Pcoh(X, Y) and t € Pcoh(Y, Z) then
ts € Pcoh(X, Z) given by

(t5)ac = Z Sa,bth,c

be|Y|

® |[dy € PCOh(X,X) is ((5373/)(3’3/)6‘Xﬂxl.

This defines a category.



Cartesian product

e Terminal object T such that |T| = 0.

L ‘XO & X1| = {0} X ’X()‘ U {1} X |X1| so that
(R0)P0&Xl & (Rx0) %0l x (Rx0) X!

® pr; € (Rsg)Xo&XlxIXil given by

(pri)(j,a),a’ = 5/,}'53,3’

o y € (Rso)X0&Xl isin P(Xp & Xy) if pr; -y € PX; for i =0, 1.
e If t; € Pcoh(Y, X;) for i = 0,1 then
<t0, t1> € PCOh(Y,XO & Xl) is given by <t0, t1>b7(i,a) = (ti)a,b-



P(Xo & X1) = PXO X PX1

Up to this iso, the cartesian product is completely standard:
® pr;-(x0,x1) = X

L4 <t0, t1> Yy = (to -y, t -y) for t; € PCOh(Y,X;)



Tensor product

Given x; € PX; for i = 0,1, let xp ® x1 € (RZO)|X°|X|X1| given by

(XO ® X]-)(ao,a1) = X030X131

° [Xo@Xi| = [Xo| x X1
® P(Xp ® X1) minimal such that xp ® x; € P(Xo ® X1) for all
x; € PX; for i =0,1.

Pcoh(Z ® X,Y) ~ Pcoh(Z, X — Y).




The object |

1 = ({*},[0,1]). Notice that P(1 —o X) ~ PX
| =1& 1 sothat Pl =[0,1] x [0, 1]
o, 1 € Pcoh(1,1) ~ PI, actually 7o = (1,0) and T3 = (0, 1).

T, w1 are jointly monic:

by linearity, t € Pcoh(l, X) is fully determined by
to=t-(1,00 e PX andt; =t-(0,1) € PX.

Moreover ty + t1 € PX since to + t1 = t - (1,1) since (1,1) € PI.
P(l —o X) = {(X(),Xl) e PX ‘ Xp+ X1 € PX}



Canonical Witness Axiom

Up to this iso we have
(x00, %01) + (x10, x11) = (x00 + X10, X01 + X11)
and so

((x00, X01), (x10, x11)) € PSTX < (X00 + x10, %01 + X11) € PSIX
& X0 + x10 + X01 + x11 € PX
& (x00 + xo1, x10 + X11) € PS§1 X

and hence the CWA holds.



The induced monad S; : Pcoh — Pcoh given by §|X = (I — X)
behaves exactly as expected:

(x € PCOh(X,S|X) CX'X:(X,O)
0x € Pcoh(S7X,S1X) Ox - ((x00,%01), (x10, x11)) = (X0, X10 + X01)



The differentiation coalgebra

It is defined essentially as in Coh, and is a coalgebra for the same
reason.

5e (RZO)H%!H
defined by

1 ifi=0and 3n € N m=n[0]
dim=41 ifi=1and 3ne N m=n[0] + [1]

)

0 otherwise

Remark (Surprise)

The case i = 1 implements the differential, so | expected to have
sthg like n as coeff. instead of 1. But it's not the case!



The exponential functor

['X| = Mgn(]X]) (no uniformity restriction).
If x € PX and m € [!X| then x™ = Hae‘x|x§"("’) € R>o

x = (Xm)m€|!X|
and P(!X) is minimal such that Vx € PX x' € P(1X).
Given t € Pcoh(X, Y) we need !t € Pcoh(!X,!Y) such that

Vx € PX It -x' = (t-x)"

This determines fully t.




Simple computations give, for t € Pcoh(X, Y) C (R20)|X‘X|Y| and
(m,p) € 'X — Y] = Mg,u(1X) X Mg (1Y):

(I m "
reL(m,p)
where
L(m, p) = {r € Ma(|IX| x Y]} |
Z r(a, b) = m(a) and Z r(a, b) = p(b)}

belY| ac|X|

and

S G
[r] a belv| Hae\x| r(a, b)! e



The evaluation morphism
ev € Pcoh((l — X) ® 1, X) eV((i,a)j),b = 5a,b5i,j
Then levpy m # 0 implies

M = [((0731)30)’ S ((07 ak)vo)a ((1a bl)a 1)? x ‘7((13 bn)a 1)] = (/7 r)
m=1ay,...,ak,b1,....,bp| =1+r

Setting | = [a1,...,ak] and r = [by, ..., by]. We have

levagm = </ +/ r> 1 (l(a)/é)r(a)>

ac|X|



The differential functor

Remember that 0x = cur f € L(!1SX,S,!X) where f is

. 2
(1= X) @1 2% 11 = X)@ 11 25 (1 = X) @ 1) 2% 1X
Using the above computation of lev and definition of § we get

]- |fI:07r:[]7m:/
Ox) . imy = A m(a) ifi=1, r=1[a], m=1+]a]
0 otherwise.



At € Pcoh|(X,Y) =P(!X — Y) is completely characterized by
the associated analytic function

t:PX - PY

|
X t-x = E tm X"
me|lX]| belY]|



Then Dt € Pcoh (S, X,SY) is characterized by the analytic
function (setting f =t : PX — PY)

Dt : P(S,X) = P(SY)
(x, u) = (F(x), f'(x) - u)

where

Fl(x) u= < 3 ( 3 (m(a) +1)tm+[a]7bxm> ua>b€m

ac|X| IepX|

is just the standard differential of t.



Differential as a linear map

Given x € PX we define X, the local PCS at x:
| X«| ={a€|X||Je>0x+ce, € PX}
PX, = {u € (Rso)X | x + v e PX}
and then f'(x) € Pcoh(X,, Yy()) satisfies (for b € |Yy(,)|)
/ d o
(F'(x)-u)p = af(x + tu)p standard Gateaux derivative.
t=0

The fact that Dt € Pcoh(S;X,S,Y) also tells us that this
derivative is analytic in x.



Strong similarity with Tangent Categories



Mfd: category of smooth manifolds and smooth maps.

There is a tangent bundle functor

T : Mfd — Mfd
X = A{(x,u) | x € X and v € T, X}

T, X = tangent space at x to X. A vector space.

And if f € Mfd(X,Y),

TF:TX = TY
(x, u) = (F(x), £'(x) - v)

Looks very much like our D functor!



Discrepancies

Is T a special case of D?

Of course not: given (x,u) € TX, it makes no sense to consider u
alone (no 2nd projection TX — X) nor to compute x + u € X in
general.

Is D a special case of T?

No, because our “tangent spaces’ are only partial commutative
monoids whereas T, X is crucially a commutative monoid.

Remark

More philosophically, our approach is based on S acting on a
“linear” category (a category of algebraic objects, the linear
category of a model of LL).

This is typically not the case in the tangent bundle case.



More precisely, in tangent categories (= categorical axiomatization
of the tangent bundle functor) we have a natural transformation

px : TX — X, intuitively px(x, u) = x.

It is required that there is a pull-back and an addition morphism s

ToX —— 5 TX

8
\/

This s is a total addition operation in the fibers of p.
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