A Categorical Semantics of Construétions

‘Thomas Ehrhard |
Ecole Polytechnique, Ecole Normale Supérieure and INRIA

March 2, 1988

" Abstract

The main object of this work is to propose an
abstract framework for the description of the type
dependency semantics. Qur claim is that the notion
of fibration introduced by A. Grothendieck in. the
sixties is perfectly adapted to this goal and provides
the greatest simplicity and generality,. We extend
this semantics to higher order, explaining what a
general definition for the semantics of the theory of
constructions could be.

Introduction

This paper is based on a common work with P.L. Curien
([8]). We built up together some categorical structures for
first order type dependency which we learned while fin-
ishing this work to be identical to'Cartmell’s contextual
categories. We present here some more abstract concepis
and their extension to the semantics of Constructions where
roughly higher order logic is combined with dependency.

Besides defining models for Constructions, our goal is
to “modularize” in some sense the semantics of type de-
pendency. Actually two approaches to this semantics have
been proposed. The first one by R. Seely (see [20]) uses
locally cartesian closed categories. But in this approach
every arrow is a type, which is not selective enough in
defining types. On the other hand it is a perlectly clean
and well known categorical concept. The second approach
by J. Cartmell ([2]) introduced ad hoc categorical strue-
tures {contextual categories) which match more closely the
syntactic nature of type dependency. This approach relies
on presheaves of categories. Our main claim is that these
notions are best understood in the more abstract frame-
work of fibrations. Contextual categories as well as locally
cartesian categories will be instances of this more general
notion.

We introduce stepwise categorical structures to inter-
pret first and higher order type dependency. The definition
is often directly suggested by the syntax, both by the forms
of judgements and the inference rules. The main feature of
type dependency as compared with simple Curry types is
that types and contexts have to be proven well formed.
Recall first the basic categorical interpretation of simply
typed A-calculus. There is only one form of judgement:
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T+ M : P. Types and contexts are interpreted as objects
in a category and terms by arrows, Let us keep this in
mind and start to examine the syntax of type dependency.
Contexts and types are typically introduced by judgements
T : Context and T A : Type. The similarity between
this last judgement and the one in the simply typed case
suggests, as a first attempt, to interpret

e contexts as objects I' in a category B

s types as arrows s : I' — 1 from contexts to a special
object ) associated with “Type”.

The obvious drawback of this interpretation iz to force a
higher order concept into the semantics. So we don't want
to be so precise about types. We simply say that they are
assoclated to contexts in some way.

More precisely, we introduce two categories B and F,
and a functor p : F — B. B should be seen as having as
objects the proven judgements I' : Context, and F proven
judgements T' = P : Type. Then

p(T'F P :Type) =T : Context .

How can we build new contexts? The basic rule is
T'F P:Type
T'{z: P): Context

it suggests to introduce a functor ¢ : F — B sending a
judgement I' F M : Type on the corresponding extended
context.

G(I'F P : Type) =Tz :.P) : Context .

This operation should generalize in a sense the usual cat-
egorical cartesian product, since with simple Curry types
the categorical counterpart of the corresponding operation
is cartesian product. Hence it seems natural to define it
as a right adjoint to a “canonical embedding functor” since
the cartesian product is the right adjoint to the diagonal
functor. But here F is not a cartesian product of categories.
However as soon as p satisfies the property of being a “fi-
bration” and F and B have terminal objects preserved by
p, we can define such a canonical embedding I. Intuitively,
I sends each judgement ' : Context on I' .1 : Type where
1is a “terminal” type well formed in any context. This



requirement is equivalént to the fact that I be a full and
faithfull right adjoint to p. Thus we basically require the
existence of p,G: F - Band I: B Fwithp1I4¢
and I full and faithfull. Moreover p will be o fibration as
we shall see now.

Let us turn to the interpretation of terms, which are
introduced by judgements I' - M : P. This suggests that
types should also be viewed as objects in some “local” cat-
egories depending on the contexts and that terms should
be interpreted as arrows in those categories. This kind
of indexed category structures is already familiar for the
interpretation of predicate calculus or higher order logic
([14,19,21,4]). In contrast with those approaches, the basic
structure already imposed yields a very natural definition
of the local arrows. Namely, 4 : X — ¥ in F will be said
to be a “local arrow in context A € B” if p{u) = Id4. And
a judgement I' - M : P will be translated into a morphism

e I(l" Context) — (T} P: Type)

such that p(p) = Idrcontexy. But when we are glven a
morphism between contexts f : A - B in B which could
correspond to a structural rule like logical weakening, we
should have some way to apply this rule to types (resp.
terms) in context B getting types (resp. terms) in context
A. This is the essence of type dependency and it suggests
that p should be a fibration. Actually it has been shown
{see [1]) that the notion of fibration is specially well adapted
to the study of “pseudo-functorially” dependent families of
categories. And we want to keep these pseudo-functors in
the scope of our work because some of the most interesting
models of type dependency are of this kind (locally carte-
sian closed categories).

Then the dependent product is axiomatized as a right
adjoint to a weakening functor, a bit like in [19], but in a
more economic way since plain fibrations are under consid-
eration, and not presheaves of categories.

By lack of place, we shall not be able to describe the
translation of terms into our semantics in this paper be-
cause this is quite a technical topic. However to give a
more syntactic justification to the use of fibrations, let us
explain how we translate variables. Basically, the rule for
introducing variables is the following:

' A:Type

Ple:A)Fz: A
The denotation of judgement I' + A : Type is an ob-
ject X € F which we assume to be built. Since T 4 ¢
we have a natural transformation w : IG — Id (the co-
unit morphism) which we can understand as containing
the projections associated to our operation G of context
building. We can guess it will be the basic tool for trans-
lating variables. (Remember that for cartesian product
which is defined by an adjunction A 4 x the co-unit mor-
phism defines both first and second projections. } To sim-
plify a bit assume that po I = Id. We already know that
those functors are naturally isomorphic since I is full and
faithfull and we shall see that this additional hypothesis
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is not very strong. Consider #(X) : IG(X) - X in F
and ft(X) = pr(X) : G(X) — p(X) in B. (We call
it fst(X) because it looks very much like a first projec-
tion natural tra.nsforma‘tion) Now comes the important
point: since p is a fibration we have a “cartesian” mor-
phism fsf(X WX : fst( X ) (X) — X (see the precise defini-
tion below) that p sends on fst(X) (we say: “over fst(X) for

?"). Of course the 1dent1ty is a morplusm F in B such that
fst(X Yo f = pr(X) and thus since fst(X)(X ) is cartesian
there exists a unique morphlsm & IG(X) — fst(X)(X)
such that

p(§) =Id and fst(X)(X) of = W(X)
The denotation of judgement I'(z : A) b & : 4 will precisely
be £,
What about Constructions? (See for instance [3,13] for

a description of the Chleulus of Constructions of T. Co-
quand and G. Huet.) Indeed what we have given unto now
is a framework where to interpret first order type depen-
dency (that is with predicative product of types). In order
to interpret constructions we must be able to

e say that a term is a proposition, and for this we in-
troduce an object £ € F corresponding to the type
Prop of the calculus

» see each proposition as a type, ie. have a “natural”?
way of sending a morphlsm A — G(Q) on a type in
context A

» impredicatively quantify over propositions, ie. have a
“natural” way of sending a morphism G(X) — G(Q)
ot a morphism A — G(£2) when X is a well formed
type in context A.

And those data should satisfy a coherence condition.

Section 3.3 of the paper gives an example of such cat-

egorical structures using the w-sets recently introduced by
E. Moggi.

1 Preliminaries

In this section we recall a few categorical notions and con-
structions which will be useful in the sequel of the paper.
Those definitions are bound to the related concepts of fi-
bred and indexed categories.

We assume a basic knowledge of adjunctions. For defini-
tions and general results see for instance [15]. The following
result states a kind of symmetry between left and right ad-
joints to a given functor. It will play a central rols in the
paper:

Proposition 1 Let F : X - Y, G:Y — X and H:
X = Y be functors such that F - & and G 4 H. Then the
co-unit of F - G is an iso iff the unit of G <4 H is.

Actually, both statements are equivalent to the full- and
faithiullness of G,




1.1 Fibrations

The concept of fibration has-been introduced by A. Gro-
thendieck. We refer to [1] for more detailed definitions and
for deep reasons why plain fibrations are to be used rather
than indexed categories and split fibrations. In the whole
section, F' and B will be categories, and p will be a functor
F — B. For each A € B we can define the category “over
A" which is the subcategory of F of which morphisms ¢
satisfy p(y) = Ida. It will be denoted pl(4).

Definition 1 Let X € F and f : B — A = p(X). 4
morphism p 1 ¥ — X is said to be “cartesign” over f if
ple) = f and if, for each 1 Z — X in F such that there
eaists'a g + p(Z) — B factorizing p(yp) in p(¥) = fog,
there ezists an unique X : & — Y such that p(x) = g.ond
p=pox. ‘

: Next comes the definition of fibrations:
Definition 2 p is said fo be a fibration if for each A€ B,
X eF and f 1 A— p(X) in B there exists o morphism
Y — X in F which is cartesicn over f for p. We shall
sometimes coll “basis” of the fibration the category B. The
fibration s seid to be split if we have done o functorial
choice for those cartesian morphisms. '

“Doing a functorial choice of cartesian morphisms” means
for each f 1 A — p(X) in B having been able to choose
a cartesian morphism f(X) : F4(X) = X in such a way
that Idyixy(X) = ldy and if g : B — p(Y) = 4 then
(f’_n;—g)(X) = f(X)o§(Y). Notice already that in many
interesting cases such a choice is impossible or at least non
canonical, . \

Thus when p is split, p~! may be extended into a fune-
tor B® — Cat ie. an exact (not pseudo-functorial) in-
dexed category. (A pseudo-functorial indexed category is
simply a fibration.) Such a functor is also called a “presheaf
of categories”, and we note Psh(B) the category of those
presheaves with natural transformation as morphismas.
Remark: When ¥ € F we can define a functor

py : F/Y = B/p(Y)

simply by sending each F : X — Y € F/Y on p(FY :
p(X) = p(Y) and similarly for morphisms. In fact the cor-
respondence Y+ py is natural. We have the following
caracterization of fibrations which is just a simple rephras-
ing of definition L.

Proposition 2 4 functor p: F — B is a fibration iff for
cach Y € F there ezists o functor ¥ : B/p(Y) — F/Y such
that py o Y = Id and which is e right adjoint to py having
the identity s co-unit morphism.

Particularly, when F has a terminal object 1 that p
sends on a terminal object in B, this proposition gives us
a functor [ : B — F such that po [ = Id and which is a
right adjoint to p having the identity as co-unit morphism,
since F'/1 and F are isomorphic.
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We have defined the concept of fibration. As usually in
category theory, there is a notion of morphism associated

Definition 3 Let p: F‘—» B and ¢ : D — B be tweo fibro-
tions over the same basis. A functor F'1 F — D is said to
be cartesian from p to ¢ if it setisfies go F' = p and sends
each p-cartesian morphism on e g-cartesian one. '

Of course cartesian functors may be composed, yielding
cartesian ‘functors and we define in such a way. a category
Fib(B) which is a'subcategory of Cat/B.

Given a fibration and a natural transformation between
two functors ranging in the basis of the fibration, there
is a cartesian functor and a natural transformation which
is p-cartesian in some sense, defining a “natural choice of
cartesian morphisms”. : :

. To be more precise we state first some notations. As
usually, p : F — B will be a fibration. Let F': C — B
be a functor. We shall adopt the following notations for a
chosen pullback of the functors F ‘and p:

FxC £ C
pF

Bl |F
F £, B

It is known that pr defines then a fibration. When no con-
fusion, weshall write F instead of . With those notations
we have the following

Propositioﬁ 3 Let F,G : C — B be two functors and
s F = @ be a naturel transformation between them.

Then there exists e functor ¢* 1 F ><GC — F XFC which
s

P,

is cartesian from pg to pr and @ naturel transformation

&1 Flog* — G such that for each £ € F ch the mor-
By

-phis'm 5(&) be p-cartesian over a(pa(§)).

Notice that in the split case, when composing a presheaf

with a functor one gets a new presheaf, and there is a pull-

back diagram between the associated Grothendieck’s con-

structions (see section 1.2). But since we deal with plain

fibrations the pull-backs are what remains of this figure.

Proof: We make a particular choice of pullback: F XFC
P

will be assumed to be the category of which objects are the
pairs (X, A) where X € F and A € C such that p(X) =
F(A) and of which morphisms are also pairs of morphisms

‘that p and F send on the same morphism. Then pr and F’

are the two cbvious projection functors,
1) We verify first that as announced pp is a fibration. Let

(X, A) el XFC and f: A’ — A. Then since p(X) = F(4)

there exists a p-cartesian morphism ¢ : X’ — X in F over
F(f). Weshow that (p, f) is pr-cartesian over f. Of course
it is 2 morphism in F XFC over § for pp. Now let (1, g} :

b2
{Z,C) — (X, A} be a morphism in F X C and assume that
Dy
there exists sn arrow h: C — A’ in C such-that foh = g.




Then F(foh) = F(g), i.e. F(f)o F(h) = p(3) and now
since y is p-cartesian over F(f) there exists a unique 8 :
Z — X'in F such that ¢ 0 8 = ¢ and p{#) = F(h). Hence
{(6,h) : (Z C) — (X', A’) is a morphism in F >< C over h

for pr and which factorizes (¢, g) in (i, f) o (9 h) (¢, 9).

The unicity follows from the fact that pp is the second
projection functor. Hence pr is a fibration.

2) Next we build a functor o*, It is defined by a choice of
cartesian morphisms, and: those cartesian morphisms will
turn out to define the natural transformation . More pre-
cisely:

¢ If(Y,B)eF >< C is an object then ¢(B) : F{B) —

G(B) = p(Y) Hence there exists a p-cartesian mor-
phism &Y, B) : X —» Y in F over it. (Here we use
of course very strongly the axiom of choice.) We take
a*(¥,B)=(X,B).

Let (4, 9) :
-+ (Y',B") in F >< C. Since ¢ is a natural

Now we give the morphism part of ¢*
(Y, B) -

transformation the followmg diagram is commutative:
FB) 1 pay

o(E)l
e’ X gy

13(51)

Thus p(4 0 5{Y, B)) = 6{B") o F(g). Hence since
(Y, B'} is p-cartesian over o B') there exists a unigue
morphism ¢ : X — X’ (X and X’ being respectively
the sources of #(Y, B) and (Y, B')} over F(g) forp
such that the following be commutative:

X S oy
s | |50
y -y
and we take o*(¢, ¢) = (0, g).

It is easy to see that o* defines a functor using the unicity in
the definition of its morphism part and clearly pr 0 o* = pg.
It is also clear that & is a natural transformation which is
“p-cartesian”. _

3) It remains to show that o* sends cartesian morphisms
on cartesian morphisms. We show first this property for the
cartesian morphisms (3,¢) : (Y, B') = (Y,B)in F >< C

such that ¢ be p-cartesian over G{g) in F.. Using the same
notations as above 1) we just have to show that ¢ is p-
cartesian over F(g). Let p: Z — X' be any morphism in
F and assume that we have in B a morphism o : p(Z} —
F(B) = p(X) such that F(g) o oo = p(p). Hence we have

Glg)oo(B)oa=a(B")op(p)
so there is a unique morphism A : Z — ¥ such that

por=c(Y",B) and p(A) =o(B)ow
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but furthermore (Y, B) is p-cartesian over o(B) so there
exists a unique morphism p: Z — X such that

(Y, B)o ,u3= A and plp)=a

Let us verify that oy = p. Actually it results from the
cartesianity of (Y, B').. More precisely, we have p(y o u)
p(p) and the following equality is true for = p and 6 =
SG o] !.L:

WG, B) 06) = oy 0 5(Y, B) o p)

but there is only one morphism 8 : Z — X' satisfying this
requirement and p(6) = p(p). Hence pou = p. We check
that p is the single morphism Z — X verifyirg p(u) = o
and @ ou = p by using successively the cartesianity of v
and #(Y, B).

4) Last we generalize the result of 3) to all cartesian mor-
phisms, Take (¢,g) : (Y’ BY— (Y,B)in F XGC a pg-

cartesian morphism over g. Now let ¢ : ¥Y” p,—> Y be a
p-cattesian morphism over G(g). Then (', ¢): (Y, B') —
(Y, B) is pg-cartesian over g. So (¥, g) and (¥, ¢) are iso-
morphicin F >< C/ (Y, B) and hence theiri images by o* also

are. This completes the proof.

Remark: First, when C is the category with a unique ob-
ject and a unique morphism, remark that this proposition
introduces a notation for a choice of cartesian morphism
over f with codomain X when f : A — p(X) is given in B,
namely f(X) (XN — X,

Next, in the sequel of the paper, we shall always make
the choice of pullback of functors described above. When
g:E— Bisafibrationand F: D — B is any functor,
the projection functor gr : E XFD —+Disa ﬁbratmn for

which we make the following choice of cartesian morphisms:

let(XU)EExDandletf V——)qF(XU)—Ubea
morphism in D We take

f*(X, U) = (F(f)*(X)a V)
and
Fx,U) = (F(7YX), §) (1)

As we have seen the functor ¢* and the natural transfor-
mation 7 defined above correspond to a choice of cartesian
morphists over the natural transformation ¢. But gener-
ally there is no unicity of this choice. But as far as type
dependency is concerned this doesn’t matter because they
are all isomorphic in the following sense:”

Proposition 4 Let F,G : C ~+ B be functors and o : F —
G e natural fransformation. Let S,T : F >< C—TF x C

and s : F'oS — G and t : F'oT — G’ be two natuml
tmnsformatwm as buill in the previous proposition. Then

there exists a unique natural isomorphism i: 5 — T such
that (po F')i = id and to F'i = s.




The proof is easy and left to the reader. So we shall make
such choices and not care about their canonicity. That is
“why it was justified to introduce notations like ¢* and 7.

1.2 The Grothendieck’s construction

The aim of this construction is to build a fibration from an
indexed category. We present it in the simple case where
the indexed category is exact (that is not pseudo-functorial)
because we don’t need more in the paper. We define a
functor

Gr: Psh(B) — Cat/B

o Let F: B®® — Cat be an object of Psh(B). We
note Gro(F) the category of which objects are the
couples(A,s) where A ¢ B and 3 € F(4), and a
morphism (4,3) — (B,t) is a couple {f,p} where
f€Homp (4, B) and p € Hompu) (s, F(F)(1)). Of
course there is & first projection functor Gro( F) — B,
and we take Gr{F) to be this functor.

¢ Let 7 : F — G be a morphism in Psh(B). We define
Gr{T) by taking

Crl(T)(4,8) = (A4, T(A)s))

and = :
Gr(T)(f,p) = (f; T(A)(w))
when (f,p) : (4,5) — (B,1) in Gro(F).

Now the important point is the following:

Proposition 5 Gr defines an equivelence of categories be-
tween Psh(B) and the subeategory Split(B) of Cat/B of
aplit fibrations over B. Moreover, when p is @ split fibration
over B, p and Gr(p™!) wre isomorphic in Split (B).

A morphism of Split (B) is of course a cartesian functor
which preserves splittings.

1.3 Adjunctions and fibrations

When dealing with presheaves of categories, one has often
to consider “natural adjunctions”, i.e. natural transforma-
tions between presheaves which at each object of the base
category define an adjunction and such that furthermore
these adjunctions be natural (this means that for each mor-
phism of the base category, the value of the two presheaves
at that morphism define a morphism of adjunctions as de-
fined in [15] chapter IV, section 7). This is the case for
instance in [21]. The corresponding notion in the more
general framework of fibrations iz simpler:

Definition 4 Let p: F — B and ¢ : D — B be fibro-
tions, Let F: F — D and G :' D — F be two carfesian
functors between those fibrations. We say that they define
o “fibred adjunction” if they are adjoint in the usual sense
end if p sends the unit of the adjunction on the identity (or,
equivalently, g sends the co-unit on the identily).
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It can be checked that Gr sends natural adjunctions on
fibred (and in fact split) adjunctions,

1.4  Fibrations and the Yoneda lemma

Let g: D — Band p F — B be two fibrations with the
same basis. We call Cart (g, p) the category of which objects
are the cartesian functors from ¢ to p and morphisms are the
natural tra.nsformatlons of which p sends each component
on the identity.

Let A € B. Let d4 : B/A — B be the domain furic-
tor. It defines the split fibration which corresponds to
the discrete indexed category which sends each B € B on
Homp (B , A). For this fibration, all morphism of B/A is
cartesian. The fibred version of the Yoneda lemma is then
the following:

Proposition 8 The ¢ategory Cart (da,p) 15 equivelent fo

P (4).

We shall note Yony (or simply Yon if no confusion is
possible} the direction p~! (4} — Cart (d4, p) of this equiv-
alence.

As the reader can guess, when X € p~1(4) the functor
Yon(X) : ds — p is defined on the object by Yon(A)(f) =
f*(X) and similarly for morphisms.

2 Categories for dependent types

We introduce in this section a notion of categories where to
interpret first order type dependency. In the split case, this
notion has strong connections with the “categories with at-
tributes” introduced by J. Cartmell in his thesis (see [2]),
but we present it in a simpler, and we claim more natu-
ral way. Anyway, the “split” condition is very strong and
we shall just assume to have a fibration as suggested by
Bénabou's paper [1]. With such assumptions we get more
conceptual simplicity and a wider generality including lo-
cally closed categories as well as many other categorical and
set theoretical constructions as we shall see.

2.1 D-categories

Definition 5 Let F and B be cotegories. 4 pre-D-category
structure on these colegories is given by three funciors:

pG:F—B and [:B—-F

such thot p 1 I 4 G and the co-unit of p 4 I be an iso
(i-e. I is full and faithfull). We say that (p,I,G) defines a
D-cotegory if p is o fibration. When p is .splzt we say that
the D-category 1s eplit.

Remark: Two things are to be noticed: first remember
that if a fibration p is given and if F has a terminal object
that p sends on a terminal object of B, then there exists a
functor I : B — F satisfying the conditions of the definition
w.r.t. p(see proposition 2). Next as soon as (p, I, G) defines
8 pre-D-category the unit of I 4 G is an iso thanks to




propaesition 1.

We have an interesting result which shows that each
fibre category p~! (A) has a terminal object in a D-catego-
ry. More precisely:

Proposition 7 If p: F — B i3 a fibration and if I : B —
F is a right adjoint to p such that the co-unit o of this ad-
junction be an is0 {i.e. o full and faithfull right adjoint),
there exists o functor 1: B — F such that pol=1d, p1
and the co-unit of this edjunction be the identity. Further-
more Bl is a p-cartesian naturel transformation over o™}
from 1L to I, (B denotes the unit of p-1.)

As an easy crollary of this we have thatfor A ¢ B, 1{4) is
terminal in p~! (4). We give the proof:

Proof: Consider any A’ € B. Then o~1(A4): 4 — pI(A).
Let 44 : 1(A) — I(A4) be a p-cartesian morphism over it.
1 defines a functor {as in proposition 3). Now let X € F
be any object. Then 8(X) : X — I(4) where 4 = p(X).
But ape pf = Id and hence pf(X) = o 1(A). Whence a
unique morphism 1X.: X — 1(A) over the identity for p
such that y4 01X = B(X). To show that X is the single
morphism X — 1(A) over the identity for p, it is enough to
verify #{1(A)) = ~a4. But this results from the naturality
of # which makes the following commute:

104) 9 14
“MJ' lIP("m)
) 29 rprca)

and from fa o I = Id. This completes the proof (remain-
ing details are left to the reader).

So we could as well assume that poel = Id and that
p 71 I with the identity as co-unit. We shall not adopt this
point of view for philosophical reasons: we want to speak
as few as possible of equality between objects of categories,
at least in definitions of basic concepts. Isomorphism is a
meore categorical concept:

Now we give the “canonical” example of that situation.
It has been pointed out to us by J. Bénabou. Consider any
category B and let F be the category of which objects are
the morphisms f : A — B of B and the morphisms are the
“commutative diagrams”, i.e. & morphism (f : 4 — B) —
(f' - A" — B'} is a pair (g, h) of morphisms such that the
following be commutative: '

A 2w

i |7

B L, B

It is the category B2 where 2 is the category - — -. Let
p: F — B be the functor which sends each morphism
of B on its goal object and each “diagram” on its second
compenent. For I : B — F we take the functor which sends
each object A € B on Id, and each morphism f: 4 - B
in B on the pair (f,f). Last we define @ : F — B as
sending & morphism of B on its source and a diagram on
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its first component. It is an easy exercise to verify that
p 7 I -G and we have of course that the co-unit of p 4 T
is the identity. So we have a pre-D-category structure,
Now assume furtherrore that B has all pullbacks, We

verify that p is then a fibration. Actually consider an object
fiA— BofF. Let g :.C — p(f) = B be a morphism in
B. Then pulling back g along f we get the following limit
diagram: ‘ ,

D 4 4
| ls

¢ %+ B

Then (g', g) is & p-cartesian morphism over g. This is the
simplest exemple of D-category. And there is usually no
way to split it. :

Grothendieck’s construction also gives rise to a D-cate-

gory structure which is split (this was actually our initial
intuition, whence the clhoose_n notations). Let us precise a
bit this point. Take B = Cat (the category of small cat-
egories) and let F be the category of presheaves of small
categories with terminal objects preserved. (Precisely, an
object of ¥ is given by a small category X and a presheaf
5: X — Cat such that for each 2 € X the category s(z)
be small and have a terminal object and for each f 1z — ¢
the functor s(f) preserve terminal objects. A morphism
(X,s) — (¥,1) is given by a functor F : X — ¥ and a
natural transformation s — ¢ o F.) Then for p we take the
functor which sends each presheaf on its domain category,
for I the functor which sends each category on the constant
presheaf with value the terminal object of Cat (the cate-
gory with one object and one morphism) and for & we take
the Grothendieck’s construction.

2.2 Split D-categories and categories with
attributes .

Let us recall the definition by Cartmell (with personal no-
tations):

Definition 6 A category with etiributes over B 15 ¢ func-
tor A ; B°? — Set such that

o for each x € B and each s € A(z) there 1s an object
z.3 € B gnd ¢ morphism fst, 1z . s 2

o foreach p:z — y in B and s € Aly) there is a
morphism p As . Ap)(s) — y . s such that the
following be a pullback:

pAs

z.Alp)(s) &5 y.s
fst_ﬂp)(a)l J'fst,
T £ oy

and we furthermore assume the! the correspondence
p = pAs s funclorial tn o suilable sense

o for each x € B there i3 an element 1, € z° such that
fst1, be en isomorphism. ‘




Now we can see how the split D-category structure gives
rise to a category with attributes: for A(z) we take
Obj(p~ (x)) and for = . s we take G(s).. Next our adjunc-
tion yields a natural transformation v : Jo G — Id and
then, for each =z € B and s € A(z) the first component of
n(z,s) is a morphism z . 3 — z and we take this morphism
for fst,. It i3 not very hard to verify that those definitions
actually yield a category with attributes. Conversely, being
given a category with attributes 4 over B, we extend 4 into
an exact indexed category by taking for morphisms from s
to ¢ in a slice A(x) the morphisms p: ¢ . s — ¢ . ¢ of B such
that fst; o ¢ = fst, and by defining the morphism part of
functors A(p) (for p morphism in B) using the pullback ax-
iomatized in the above definition. Then the Grothendieck’s
construction applied to this indexed category yields a split
D-category structure with F = Gro(A).

2.3 Closed D-categories

Our goal now is to define a notion of categories where it
will be possible to interpret the first order dependent type
product.

We assume that (p, I, G) defines a D-category., By the
adjunction I 4 G we have a natural transformation 7 ;
IoG — Id (the co-unit morphism of the adjunction) and
hence prr is a natural transformation pe I o G — p.

Let o : pof — Id be the co-unit of p 47, Tt is an iso
and we have ¢ 1G: G = poTo G, So

proa GG —p

We shall call fst this natural transformation.

Now let Cart be the subeategory of F of which objects
are those of F and morphisms are the p-cartesian ones.
(Obviously the identity and the composition of two carte-
sian morphisms are cartesian,) Let 4 : Cart — F be the
obvious injection functor.

Definition 7 4 D-category (p, I, G') i3 closed of (fsty)" has
a fibred right adjoint 1.

This definition makes sense because the existence of a
fibred right adjoint doesn’t depend on the choice of fsty*
as easily seen with proposition 4. In this definition, the re-
quirement for II to be a cartesian functor should he under-
stood as a generalization of the Beck-Chevalley condition
in locally cartesian closed categories. (We hope that the ex-
ample of section 2.4 makes this point clear.) Actually this
condition says that the local product functors define a nat-

ural transformation when restricted to pull-back squares,

that is cartesian morphisms. This is why we have introduce
the category Cart and restricted our requirement that the
adjunction should be fibred to this subcategory of F,

Finally, the fibred adjunction corresponds to another
level of naturality, syntactically bound to substitution of
terms in terms, whereas the above naturality corresponds
to substituting terms in types.
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We examine first shortly what this definition means in
the split case, coming back to Cartmell’s categories with
attributes. In this framework, using notations of 2.2, Cart
is the category thh objects those of F and morphisms those
of F having the 1dent1ty as second component. Then the
ahove definition axiomatizes for each z € B and each s €
A(z) 2 right adjoint IIs to fst,* such that this adjunction
be natural over Ca;x-t. More precisely this last requirement
means for instance that A(p)(IIs(1)) = TI{A(p)(s))(A(p A
Dw).

2.4 The example of locally cartesian closed
categories

We want to extend our *canonical example” to show that a
locally cartesian closed category (LCCC for short) is an in-
stance of closed Di-category. We first state some notations.
If B has pullbacks and f: A — B we note f* the “pullback
functor” B/B — B/A. When B is locally closed (what we
assume from now on), we note IIf the right adjoint of f*,
(For details about these notions which we assume known,
see for instance [20].) These definitions require of course
a choice of all pullbacks along each morphism of B which
hasn'’t to be canonical in any way. We shall sometimes
adopt the following notation for the other morphism in the

pullback: : "
p g 4

9fl lf
c < B
Let us recall the Beck-Chevalley condition which is valid in
any locally cartesian closed category:

Proposition 8 If

4 Lo
s e
a Lop

is a pullback then there is a natural isomorphism between
the functors IIf o hy* and hy* o IIf'.

In that case, the category Cart has objects the mor-
phisms of B and morphisms its pullback squares. First we

make a choice for the categories F x Cartand F x Cart:
nry p,Gy

e The objects of F x Cart are the pairs of morphism

P
B & C and a morphism (A B &) -

( Lpe C”) is a triple (hq, Aa, Az) such that both
following squares be commutative

A -4 B &£ ¢

Wowl e
4 Lop Lo

and the righthand one be a pullback. Then Prry is

defined by p,.(4 4L B & C) = ¢ and (py)’ by




(4L BEC)=7.

» The objects of F x Cart are the pairs of morphtsm
ey

A —fr % ¢ and a morphism (4 & B & C) —
(A’ Eiy; TN C"} is a triple (hy, ha, ka) such that both
followmg squares be commitative
A L B 5 ¢
TN
a4 Lop 4o

and the righthand one be a pullback. Then pg, is
defined by pe,(4 5 B & C) = 4 and (Gy) by
(GAadBEC)=7§

Then , since the natural transformation fst is given by

fst(f) = f, “the” functor fsty* is defined by
sradBLc)=pWcap
for obJects, and if (Ry, ha, hs) (A s B4 0 (A N

B % C") we take fsty™(hy, ho, hs) = (h; ks, hy) where b -
D - D' is the single morphism such that both following
diagrams be commutative:

‘D 4 ¢ D f&? A
R S ™
D g’_*(f') v D’ f:_(f:) Al

and the natural tra.nsformatlon fst'y (G o fsty™ — (py)
is given by

fir(4 5 B &)= (1(9),9)

Let us define a functor II : F* >é Cart = F x Cart which
y
isa ﬁbred right adjoint to fst'y

e For obJects, we set:

l'[g_(’f)

naipscy="¥cen

o And for morphisms, if (hy, hs, hs) :-(A LB C) -
(A LIy : TR C") we know that Ay : hgo f — f'in
B/B' so by the adjunction B/h; -l hy* we get a mor-
‘phism Ay : f - hy*(f") and next we take its image
"by the functor g, But the Beck-Chevalley condition
insures us that there exists an iso e : Hg(hg (f1) =
hs" (Tlg’ (17)-
Take b’ = e o g (h{) : g (f) — ha* (TI¢' () and lét
h it haollg(f) — Ig'(f') obtained from &’ through
the adjunction B/hs - Hh3 We' take II(hq, ke, ha) =
(h ks, hy).
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3 Models for a theory of construc-
tions

We explain now how to'iinterpret a higher order impredica-
tive quantification in thie frameéwork described above.

3.1 Basic deﬁnii:ion
The definition is as foﬂcf:»ws:

* We assume that there exists an objéct £ € F such
that p(f2) be terminal in B, and we call d the fibra-
tion dg), and a T € p-1 (G’(Q)) {or, equivalently

. thru proposition 6, a cartesian functor d — p). The
associated cartesian functor Yon(T) should be under-
stood as sending each proposition on a type.

s There exists a filnctor

V:B/G(R) x Cart— B/G(Q Q) x Cart
4,Gy : d,py
which is cartesian from the fibration

dgy: B/G(Q) >< Cart — Cart to the fibration d,y :
‘B/G’(Q) x Cart - Cart

s The following diagram of functors is commutative:

B/G(R) x Cart XS B oo Qart
. d,Gry : o nG ]
vl - |n (2)
B/G(Q) x Cart TN B oy cart
d,py Y

3.2 The special case of Locally Cartesmn
Closed Categorles

We have seen that LOCC’s are D-categories. Our attempt
now is to understand what is a LCCC which is. 2 higher
order D-category. It will turn out to be a bit similar to a
topos, although much weaker. However : any topos will be a
category of this kind, trivial in some sense (as a model of
constructions).

We consider edch of the previous requirement and ex-
press its meaning in -thé framework of locally cartesian
closed categories. Remember that F = B%

o There exists a morphism § in B with codomain the
terminal object. We shall confuse this morphism with
its domain, so we shall consider  as a distinguished
object of B. And there exists a morphism T : ' —
2 in B corresponding to the operation of sending
a proposition on a type. - This functorial operation
{namely Yon(T')) consists in pulling back along 7.

¢ When given two morphisms f : X — Q and g: X -+

" Y in B there exists a morphism Vg{f) : ¥ — 2
corresponding to the higher impredicative product. It

is the object part of the functor ¥V of which existence




is required above. ‘We don't speak of its morphism
part since as easily checked it is necessarily trivial.
Furthermore V is cartesian, This means that for each
pullback diagram

X A ox
y'l 19
v Ay

we have Vg (f) o b/ = Vg'(f o h) with a natural iso-
morphism. This is a condition similar to the Beck-
Chevalley one, but for higher-order product.

¢ When f: X — Q, we shall often note f : X — X
the morphism obtained from f by pulling back along
T (the associated type). Then if f : X — Q and
gt X — Y are given we require that IIg ( f) and

VgFEf ) be naturally isomorphic in B/Y.

This kind of categories will be called “Higher order lo-
cally cartesian closed.categories” (HLCCC for short). They
* present connections with topoi which seem worth studying
in details,

As a first example remark that any topos is a HLCCC.

Take for T the ca,llssifying morphism 1 — €2 and when given
f 1 X — 9, take for g (f) the characteristic morphism
Y — 1 of Ig (f) which is 2 mono since f is a mono.

It should be noticed that those topos-models of the the-
ory of constructions are trivial in the sense that all proofs
afe collapsed in Id;. (We refer to [9] for more details about
this topic.) _

But let us give an example of such a HLCCC.

3.3 The example of w-—Sets

‘We propose a model of Constructions using the category
w~Set that E. Moggi has introduced as a very simple frame-
work for the semantics of second order A-caleulus. We show
that this category gives readily rise to a HLCCC structure.
Since Moggi’s material is still unpublished, we have to pro-
vide the definitions. Here are the components of w—Set:

¢ Objects: X = (|X|,Fx) where |X| is a set and FxC
w X |X|, called Justificution relation, is such that for
all # € X there exists n such that nFx =, .

o Arrows: Hom, get (X , Y) is the set of
f € Homget (| X| , J¥|) such that

In,Vz,m mblyz=nmbty flz)

'Using the fact that w—Set is a cartesian closed cate-
gory, when we have such an integer n for & function f
we write n Fxayp f. Such a function will sometimes
be called a “justified function”.

nm denotes the Kleene application in w and {{n,m})) the
coding of pairs (n, m).
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The first order structure: w—Set is a LOCC. - We check
first that we have pullbacks. Consider f:X =YY and
9: 2 — Y two morphisms in w—Set. Let I/ be defined
by: |U] = |X|f>< [¥] and {{m,n) v (2,2) if m Fx z and
n bz z. The gorpﬂisnm.f’ U - Zandg U - X
are the second and first projections, justified by the Kleene

encodings for projections. This defines a pullback diagram
in w—Set: ‘

U L, x
Elf'\l' fl
z L v

Now we show that w—Set is locally closed, We set first
a few notations. Let I be any w-set and F be a |T|-indexed
family of w-sets.

We call § = 3., F(i) the w-set of which support is
Fign [F(E)] with thﬁ: justifying relation defined by

{(n,mYFs(i,z) & nbkri and m Fry =

We call P = [T;c; F (i} the w-set of justified elements of
the product set [T;e;y [F(:)| with the following justification
relation: if & € [Ty |F(3)),

phra f Vi€[l,Vncw ntris pnlpgali)

Iff: X =Y weshall note f~? the |Y|-indexed family
of w-sets such that |f~(y)| = f~!({y}), and the justifying
relation be the restriction of Fx to this subset of 1X].

We define the local exponential first for local objects.
Letf:X—»Ybealocalobjecta.ndg:Y—>Zbea
morphism (both are justified morphisms of w—Set, by m
and n resp.).

Og(H:3 II Fw~2

*€Z yeg=1(2)

will be the first projection, justified by its Kleene encoding,
Next consider a local morphism ¢ : f — fin B/Y where
fi:X s Xand ff: X - 7. We define ¢ = IIg(p)
as follows: For z € Z let U, = [Tyeg-1( f~* () and let
U=73ez Vs For(z,a) € U we set ¥(z,a) = (z,8) where
ﬂ [ HyEg—l(z) _f'_l ('y) is defined by

_ Bly) = p(e(y)
since actually f/(A(y)) = flo(y)) = y and for justification,
if (n,p) is such that {n,p) Fv (z,a) (with n Fz z and
ptu, a), f is justified by Am.r(pm) where r justifies w in
X = X'. Thus ¢ is justified by A{n, p)).{(n, Am.r(pm)).
The higher order strueture - Now comes the real point: we
must interpret higher order quantification. We simply gen-
eralize a bit the original ides of E. Moggi. w-Set has a very
interesting subcategory of partial equivalence relations, a
notion dating back to Scott [18]. They are very good can-
didates for propositions among types. Partial equivalence
relations, also called “modest” w-sets, are w-sets X satisfy-
g
mbxzmbyyzz=y




The class of all modest w-sets is clearly a set PER, in-
deed, another presentation of modest w-sets is as equiva-
lence relations defined on a subset of w whence the alter-
native name. It can be endowed with a trivial w-set struc-
ture, using the embedding A : Set —+ w—Set defined by:
A{X] = (|X|,w x | X]). If R € PER, the w-set structure
of R 15 given by

|R|=w/R and ntrCeonel

An important observation is that whenever ¥ is of the

form A(|Y'|} we have Hom,, get (X , ¥) = Homget (| X, 1Y)

Indeed any index of & total recursive function justifies any
function f : |X| ~ {¥|. We have to define an object
) € B = w—Set. We take ) = A(PER).

For T we take £ = $"pe R and T is the first projection.
Thus || = S peprrw/R and n kg (R,C) iff n € C.

Now consider any ¢ : X — {2 in w—Set. Thus ¢ may be
seen a3 a | X|-indexed family of PER’s. One easily checks
that X = Yecx v (z) and § is the projection into X, For
the higher order impredicative product if g : X — ¥ we
take Yo () : ¥ — Q defined by

YyeY VYy(p)(y) =

II e(=)

2€5(y)

This definition makes sense since each #(y) = [[e,-10y ¥ (2)
is a modest w-set. Actually let o, 8 € ¢(y) and let n € w
be such that n Fyy) o, 8. Let # € g='(y) and m be such
that m b,-1y z. We have nm b,y a(z), 8(z) but ¢(z)
is modest. Thus ¢ = § and we conclude. The remaining
details are routine verifications.
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