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Abstract

We prove that, in the hierarchy of simple types,
the set-theoretic coherence semantics is the exten-
sional collapse of the multiset-theoretic coherence
semantics.

Introduction

The notion of stable function has been introduced
by Berry for the purpose of modelling functional
programming languages like PCF [Ber78]. In the
framework of dilators (functors acting on ordinals),
Girard discovered independently stability as a con-
dition allowing for a finitary representation of these
functors. He applied the same idea to the deno-
tational semantics of system F (see [Gir86]) and
this led him to the crucial observation that this se-
mantics (which is an extension of Berry’s seman-
tics of PCF) can be described in the very sim-
ple framework of coherence spaces. Berry actu-
ally developped his semantics in the framework of
dI-domains (Scott domains satisfying some further
properties). Coherence spaces are very particular
dI-domains which define a sub-cartesian-closed cat-
egory of the category of dI-domains and stable func-
tions.

A coherence space is a symmetric and reflexive
unlabelled graph (its web is the set of vertices; two
vertices which are related are said to be coherent).
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The cliques of this graph are the elements of the
corresponding dI-domain (singletons correspond to
prime elements, finite cliques to compact elements).

The space of stable functions from a coherence
space X to a coherence space Y can in turn be
described as a coherence space Z through traces:
if f is a stable function from X to Y, the trace
of f is the set of all couples (zq,b) where b is a
vertex of Y and g is a finite clique of X minimal
such that b € f(zg). This leads to the idea that the
function space operation (which corresponds to im-
plication through the Curry-Howard isomorphism)
is not atomic. It can be decomposed in two oper-
ations: (set-theoretic) exponential and linear func-
tions space.

The exponential of a coherence space X has as
web the set of all finite cliques of X, and the linear
function space of two coherence spaces X’ and Y
has as web the cartesian product of the webs of X’
and Y.

These two operations have logical counterparts
which are made explicit as logical connectives in
linear logic ([Gir87, GLT89, Gir95] describe the co-
herence space semantics of linear logic).

Van de Wiele observed that alternative defini-
tions of the exponential operation on coherence
spaces are available. More specifically, from a cat-
egorical viewpoint, the exponential is an endofunc-
tor on the category of coherence spaces and linear
maps, and this functor has an additional structure
of comonad satisfying some further requirements
(the image of a coherence space by this functor has
a canonical structure of commutative comonoid,
see [Bie95]). These properties do not character-
ize the exponential in a unique way. Van de Wiele
proposed in particular a version of this operation



where the web of the exponential of X is the set
of all finite multisets of the web of X whose sup-
port is a clique: the multiset-theoretic exponential.
From a categorical viewpoint, this exponential is
extremely natural: the image of a coherence space
by this functor 1s the free commutative comonoid
on this coherence space.

This multiset-theoretic exponential gives rise to a
semantics of functional languages where the num-
ber of times a function uses a given value of its
argument is taken into account. For instance, the
two PCF terms

t; = Az.if z then true else Q)

and
ty = Ax.if r then z else

(where Q is any forever looping programme) have
the same set-theoretic semantics but different (and
incompatible) multiset-theoretic semantics. This
semantics is not exrtensional: when applied to the
same arguments, the morphisms interpreting the
two terms ¢; and ty give the same results, but
these morphisms are different. In other term, the
multiset-theoretic morphisms are not characterized
by their applicative beheaviour, in sharp contrast
with the set-theoretic semantics which is exten-
sional.

The purpose of this paper is to give an account
of the connection between the set-theoretic and
the multiset-theoretic coherence semantics of sim-
ply typed functional languages. We restrict our
attention to the hierarchy of simple types based on
the type of natural numbers. This unique ground
type is interpreted in both semantics as the discrete
coherence space which has the set of natural num-
bers as web (the flat domain of natural numbers).

One can define a logical relation! (called hetero-
geneous relation in the sequel) between the cliques
of the multiset-theoretic interpretation of a type
and the cliques of the set-theoretic interpretation
of the same type: at ground type, this relation is
the equality, and at a functional type, two mor-
phisms are related if, applied to related arguments,
they yield related results. This relation induces
on the multiset-theoretic interpretation of a type
a partial equivalence relation (PER): two cliques

!See [Mit90] for a detailed introduction to logical
relations

are equivalent if they are related to some com-
mon clique in the set-theoretic interpretation of the
same type. The main result of the paper is that this
PER is logical, that is: at a functional type, two
multiset-theoretic cliques are related by this PER
iff, when applied to arguments which are related
by this PER, they yield results which are related
by this PER.

As the PER previously described is obviously the
equality at ground type, the fact that it is logical
can be interpreted as follows:

In the hierarchy of simple types, the set-theoretic
coherent semantics is the extensional collapse of
the multiset-theoretic semantics?.

The proof of this intuitively very natural result
follows a pattern which can be found in other recent
proofs of similar results (see [Buc96, Ehr96]): it is
based on the fact that the heterogeneous relation
is onto for finite cliques®. This means that, for any
type, any finite clique of the set-theoretic interpre-
tation of this type is related (by the heterogeneous
relation) to some clique of the multiset-theoretic
semantics of the same type.

Proving directly that the heterogeneous relation
i1s onto for finite cliques seems to be rather diffi-
cult. We follow a roundabout method, associating
by induction to each type a structure that we call
the “heterogeneous structure”. This structure is
intended to give a fine grain description of the het-
erogeneous logical relation: it induces, at each type,
a relation between multiset-theoretical cliques and
set-theoretical cliques. As it is defined, this new
relation is not logical at first sight, but it is not
very hard to prove that it is onto for finite cliques,
and then, using this fact, that it is logical. As this
new relation is the equality at ground type, it is
identical to the heterogeneous relation.

Beyond the fact that is allows for proving the
theorem above on the extensional collapse of the
multiset-theoretical semantics, the real outcome
of this approach is that it gives an insight on
the internal structure of the heterogeneous relation
(compare with [Ehr96] where a similar theorem is

2This is also due to the fact that the heterogeneous re-
lation is a partial function from the cliques of the multiset-
theoretic interpretation of a type to the cliques of the set-
theoretic interpretation of the same type.

3From this, one easily deduces that it is a partial function.



proven, but the detailed structure of the hetero-
geneous relation remains quite hidden). We may
hope to find similar structures in various situations
where extensional and non-extensional models are
compared by logical relations. So this paper should
hopefully be considered as a first step towards a
theory of the fine grain structure of extensional col-
lapses.

1 Preliminaries

Let S be a set. A multiset g of S is a function
mapping each element a of S to a natural num-
ber, the multiplicity of a in u. We denote by |u]
the set {a/ p(a) # 0}, which we call support of p.
We denote a multiset by an enumeration (delimited
by square brackets) of the elements of its support,
each as many times as its multiplicity in the mul-
tiset. Observe that, since multisets are functions
to natural numbers, the sum of multisets is well-

defined.

Definition 1 A coherence space s a couple X =
(IX]|, ©x ) where |X| is a set (the web of X whose
elements are called points) and <x is a symmel-
ric and reflexive binary relation on |X|. Two ele-
ments of | X| that are in this relation are said to be
coherent. Otherwise they are said to be incoherent.

A clique of X is a subset x of |X| such that, for
any ay,as € x, a; Tx da.

A multiclique of X is a multiset p of X such that
|| is a clique of X.

X is said to be discrete when, for any ay,as €
| X| such that ay # as, a1 and as are incoherent.

A coherence space Y is a coherence subspace of
X if |[Y| C|X| and <y is the restriction of Ox
to |Y].

We denote by —~x and call strict coherence
relation of X the relation obtained from <yx by
removing the diagonal. We denote by =<x the
complementary relation of —~x and by —x the
one of ©x , which are the incoherence relations.

We recall how linear negation, linear implica-
tion and the exponentials (both set-theoretic and
multiset-theoretic, which we denote by l and TL re-
spectively) are defined.

Let X and Y be coherence spaces.

— Linear negation. X* is defined by |X*| = | X]|
and a1 ©x1 as if a1 <x as.

— Linear implication. X —o Y
|X Y| =|X]|x |Y| and

is defined by

(a1,b1) ©x—y (a2, b2)
if a1 x a2:>b1 Cy bz

and a; —~x as = by —~y bs.

— Set-theoretic exponential. The points of | ! X]|
are the finite cliques of X. Two finite cliques
xz1 and x5 are coherent in iX if, for any a; €

x1 and as € X9, a1 Tx asg.

— Multiset-theoretic exponential. The points of
|} X| are the finite multicliques of X. Two fi-
nite multicliques yy and py are coherent in ! X

if [pa| =y ol

Let f be a function from the cliques of X to
the cliques of Y. We say that f is stable when f
is monotone, continuous (commutation to directed
unions) and, for any cliques #; and z3 of X such
that z; U 24 is a clique,

f(l‘1 N :L‘Q) = f(:L‘1) N f(:L‘Q)

There is a biunique correspondance between the
cliques of ! X — Y and the stable functions sending
cliques of X to cliques of Y. If f is a clique of | X —o
Y then the corresponding stable function, which we
shall denote by the same symbol, is defined, for any
clique z of X, by:

flx)=A{b/3z0 €

'X| (20,b) € f and zo C z}.

Let ¢ be a clique of ! X — Y. The co-Kleisli cat-
egory of the comonad 7L in the category of coherent
spaces 1s a model of intuitionistic linear logic. Since
it is a cartesian closed category, there is a canonical
notion of application of ¢ to a clique z of X, which
yields the following clique of Y':

e(z) ={b/3uo € [LX] (ko,b) € ¢ and |po| C z}.

For more information on the coherence spaces
denotational semantics of linear logic, we refer to
[Gir87, GLT89, Gir95].

We call N the discrete coherence space that has,
as points of its web, the natural numbers. Observe
that, since N is discrete, its cliques are the single-
tons and the empty set.



The full hierarchy of simples types is defined in-
ductively by o := +| o — o, where ¢ is the type of
natural numbers. We inductively interpret a type o
of this hierarchy by o in the set-theoretical seman-
tics and by o, in the multiset-theoretical semantics
as follows:

tsm =N

We write <, to denote both coherence relations
o, and o, The same applies to strict
coherence and incoherence relations.

Until Section 5 (in which we shall extend our
results to the full hierarchy of simple types) we
restrict ourselves to the hierarchy of simple types
defined inductively by ¢ := ¢ |o — ¢. The interpre-
tation of the types in this hierarchy is the same as
for the full hierarchy.

If X and Y are coherence spaces: we denote by
p C X xY the fact that p is a relation between the
cliques of X and those of Y if  is a subset of | X]|,
we denote by  the coherence subspace of X whose
web is x.

Let f be a function with domain D. We define
f~! on the subsets y of the codomain of f as fol-
lows:

fHy)={a/a € D and f(a) € y}.

If b is in the codomain of f we shall write f=1(b)
to denote f=1({b}).

2 The heterogeneous struc-
ture

We shall start by defining the heterogeneous rela-
tion between the cliques of the multiset-theoretic
interpretation of a type and the cliques of the set-
theoretic intepretation of the same type.

Definition 2 Let o be a simple type, we induc-
tively define the heterogeneous relation R,C o, X
os as follows:

—CL’RLy, lf./[,:y,

- ¢ Roo [ if, for every & and z cliques of o,
and o5 respectively, £ R, © = ¢(&) R, f(z).

Observe that the heterogeneous relation is a log-
ical relation.

To each type o we also associate the relations
T,C oy X 05 and I;g om’ x o0,t by means of
the heterogeneous structure. Once some remark-
able properties of both relations are established,
we shall prove that Z, is nothing but the heteroge-
neous relation.

Let o be a type. The heterogeneous structure
Ho for o is a tuple (Dy, 7y, No, I5) where D, (the
domain of m,) and N, (the set of neutral points)
are subsets of |0 |, mo (the forgetful map) is a map
from D, to |os|, and, for each a € |o;|, I, (a) is a set
of cliques of ;' (a) (the locally equivariant cliques
above a). But before defining H, we shall introduce
T, and Z}, which may be viewed as notations.

We denote by P, the set |o,|\ (D U Ny) whose
elements are called pathological points. We denote
by I, (a)" the set of cliques &’ of 7r;1(a)J' such that,
for every £ € I,(a), ENE # 0. Such a ¢’ is a locally

equivariant anti-clique above a.

Definition 3 Let o be a simple type and H, the
corresponding heterogeneous structure. Given & a
clique of o,, and x a clique of o5, & T, x if the
following properties are satisfied:

- §C Dy UNy;
- (€N Dy) = x;
- foranya €z, N l(a) € 1y(a).

Such a & 1s called an equivariant clique above z.
Given &' a clique of o, " and 2' a clique of o,*,
& It &' if the following properties are satisfied:

- CD,UP,;
- (&' NDy)=2';
~ foranya €', & Nr;l(a) €L, (a)".

Such a &' is called an equivariant anti-clique above
!

z'.

Let us now give some intuitions about the het-
erogeneous structure #H,.

What we have in mind is a projection sending
multiset-theoretic points to set-theoretic points in
the most obvious way: by forgetting hereditarily
the multiplicities. And this is indeed what 7, does.



Nevertheless, due to some coherence problems (at
least), the projection is partial (with domain D).

The meaning of neutral and pathological points
is the following:

a € Ny
a € P,

means that {a} R, 0;
means that, if £ R, z, then o & &.

I, is supposed to be a local version of R,. Actu-
ally, as on may easily grasp by inspection of Defi-
nition 3, I, is the local version of Z,. But, since we
shall prove that R, and Z, are the same relation,
I, has the intended meaning.

We define #, = (Dy, 7y, Ny,1,) by a mutual
induction on the type. We start by

%L = (Na Ty Q’ IL)

where, for any @ € N, m,(a) = a, and I,(a) = {{a}}.
Now, assuming that H, is well-defined, we define
Hoy, as follows:

— (po,b) € Doy, if |po] Can Do and there are ¢
and z such that £ Z, « and |po| C &;

- 7ra—>b(/10:b) = (WU(WOD:b);

— (po,b) € Ny, if (po, b) € |(¢ = ¢),,| and, for
any & and z such that ¢ Z, z, it holds that

ol € &;
~ ¢ €l,5,(z,b) if pis aclique of 7,1, (z,b) and,

o=

for any clique & such that & 7, z, there is a pg
such that (uo,b) € ¢ and |uo| C €.

Let us check that H,_,, is well-defined. The fact
that N,_,, and I,_,, are well-defined is explicitly in
the definition. Checking that D,_,, is a subset of
|(c = t),,| is immediate. And we just have to show
that the codomain of the forgetful map is a subset
of [(c = ¢),]:

Let (po,b) € Dyoy,. By definition of
Do, o] Can Do and there are & and
x, cliques of o, and o, respectively, such
that ¢ Zp  and |po| € €. Then we have

7o (luol) € 7o (6N D) = 2,

which entails that m,(|uo|) is a clique of
os. Since pg is finite, 7, (|po]) is also fi-
nite. Hence

To=u(p0,0) = (7o (|po]), b) € [(o = 4), |-

Observe that at types ¢, ¢+ — ¢ and (+ —
t) — ¢ there are neither neutral nor pathological
points. At type ((¢ — ¢) = ¢) — ¢ there are
still no pathological points, but N((_,)—,), and

P(((4=1)=1)—1)—. are non-empty:

Let ([e, 8], 0) be an element of the web
of (((¢ = ¢) = t) =), with:

([([01,0)], 1)
B = ([([0,0],0)],2)

It is easy to check that both a and
f are in D(,_,,), and are coherent in
((¢ = ¢) = 1),,. Their images by m(,_,),
are, respectively:

({({0},0)}, 1) and ({ ({0},0) }, 2),

which are incoherent in ((¢ — 1) — ¢),.
Then, for any & and =z, cliques of
((¢ = t) = 1), and ((« = ¢) = 1), respec-
tively, such that § Z;,_,,)5, =, we have,
since x 1s a clique,

ﬂ-(l,—n)—n({aa ﬂ}) ,Q_ Z.

Hence, given that

o =

)= (EN D)) = ,
we get {a, B} € €. Which means that
([, B],0) € Ni(tsi)si)—e -
It is then easy to check that
([(Te, B1,0)], 0) € P((imss)si)—1)—i-

We shall now state a technical lemma and then
procede to the proof of the fact that 7, and 7} are
onto for the finite cliques of o.

Lemma 1 Let o be a simple type. Let & and x be
cliques of oy, and o, respectively, such that & T, x,
and let A C N,.

IfyCa then &N (n7' (y) UA) Lo y.

This lemma is a direct consequence of Defini-
tion 3.

Proposition 1 For every simple type o, H, has
the two following properties:



i) for any finite clique x of o4, there is a clique
¢ of oy such that &€ T, x;

ii) for any finite anti-clique ' of o5, there is an
anti-clique &' of o such that &' T} ',

Proof: We show this result by induction on the
type. Checking that it is true for K, is trivial, so let
us assume, as inductive hypothesis, that properties
i) and ii) hold for H,-.

We shall start by proving that property i) holds
for Hyo—y,. Let

F={(z1,b1),...,(2n,bn)}

be a finite clique of (¢ — ¢),. Then, for any i,j €
{1,...,n} such that i < j, there is a a;; € x; and
a aj; € z; such that a;; —, aj;. Hence, for each ¢,

T = {an, sy @i, Qi - .,am,a}, cees afi},
where the a! are the remaining elements of ;. Ob-
serve that k; may be equal to zero, which means
that all the elements of z; are of the form a;;. By

property ii) of H, we have:

for any j € {1,...,n} such that j # i, there
are E{J € I,_-,(aij)J' and E;l € L,(aji)l such that
1, U, is an anti-clique of oy,

for any integer [ such that 0 <! < k;, there is
& e To(al)"
Let, for any i € {1,...,n},

ki

pi = { (D lai]+ Y _[0f], bi) € (0 = 1),
j=1 k=1
Qi

/oij €&l and of € €' ).

By construction, ; is a clique* of w1, (=z;,b;).
Given ¢ € {1,...,n}, let & be a clique of o, such
that & Z, x;. Since any of the sets ¢ N7 (a), with
a € x;, 1s a locally equivariant clique above a that
must intersect any locally equivariant anti-clique
above a, it holds that, for any j € {1,...,n} such
that j # ¢ and any integer [ such that 0 <[ < k;,

ENE;#0 , Eng;#£0 and ENE#0.

4This requires the finiteness of f, to ensure that the left-
hand side of the couples in ¢; are finite.

Hence, it is easy to check that there is a pg € || oy |
such that |po] € ¢ and (po, b;) € @i. This entails
@i € Iy, (24,b;). Observe also that, since property
i) of M, ensures the existence of such a &, ¢; is
non-empty.

Let

=]
i=1

which is a clique of (6 — ¢),,,, since, given any 7, j €
{1,...,n} such that i # j, we know that &/, U}
is an anti-clique of op,. Furthermore ¢ has the
following properties:

¢ C Dy, since, for any 7 € {1,...,n}, we

have Pi c ﬂ-a_—ln(xia bl) c Da—n;

Mo () = f, since, for any i € {1,...,n},
@i being a non-empty clique of 71 (z;,b;), it

holds that 7y, (¢;) = {(2:,b:)};

for every (z;,b;) € f, ¢ N w;L, (i, bi) is a
locally equivariant clique above (z;,b;), since
Nl (2, bi) = @i

This means that ¢ is an equivariant clique above
f, in other terms ¢ Z,_, f.

Now we shall prove that property ii) holds for
Hoos,. Let

F={(z1,b1),...,(zn,bs)}

be a finite clique of (¢ — L)SJ'. All the z; are pair-
wise coherent and, thus, x = 21 U.. .Uz, is a clique
of 5. Hence, by property i) of H,, there is a clique
¢ of oy, such that & Z, z. For each i € {1,...,n}
we define

G =¢nm; ()

which, by Lemma 1, obeys &; Z, ;.
For each ¢ € {1,...,n}, let

o = {(po, i) / |po| Coin & and 7o (|po]) = 4}

For a given 1, since all the pg are pairwise coherent
in oy, ¢ is a clique of 771, (z;, bi)J'. Let ¢; be a
locally equivariant clique above (z;,b;). Then, by
definition, for any ¢ such that { Z, x;, there is a
Lo € |7Lam| such that (po,b;) € i and |po| Can €.
In particular, since & Z, «;, there is a (g4, b;) in
¢; such that |poi| Can &. Furthermore, since ;
is a clique of 771, (x;,b;), we have 7, (|poi]) = 2,
which means that (po4, b;) is in @}, so @; N @} # 0.



We have shown that, for each i € {1,...,n}, ¢} is
a locally equivariant anti-clique above (z;, b;).
Let us now take

n
¢ =] ¢
i=1

which is, as can easily be checked, a clique of
(0 — L)mJ'. Then ¢ has the following properties:

¢ C Dy, since, for any 7 € {1,...,n}, we
know that ¢! C 771, (s, bi)J' C Dosu;

oo (¢') = f', since, for any i € {1,...,nJ_,
¢! being a non-empty clique of 7% (zi,b;)",

it holds that m,_,(¢}) = {(=i,b:)};

for every (z;,b;) € f, ¢ Nm L (z;,b;) is a
locally equivariant anti-clique above (z;,b;),
since ¢’ N7 L, (2i,b;) = ¢}.

So ¢' is an equivariant anti-clique above f’, in
other terms ¢’ 7L, f'. n

o=

3 Equivalence of R, and Z,

The fact that Z, is onto for the finite cliques of o
is crucial for proving by induction the equivalence
of R, and Z, at any simple type. We are then in
conditions of proving the following proposition.

Proposition 2 Let o be a simple type. For any &
and x cliques of o, and o respectively,

ERsx iff €1, x.

Proof: We shall prove that, for any type o,

olom, [ iff V¢ x (fng:>¢(f):f(x)).

Then, by a trivial induction on the type, it holds
that, for any type o, Z, and R, are the same rela-
tion.

We shall start by proving that the lefthand side
implies the righthand side. Let ¢ and f be cliques
of (¢ —¢),, and (0 — ), respectively, such that
Loy, f

Let & and x be cliques of o, and o5 respectively,
such that & Z, z. We shall prove that ¢(¢) = f(2)
by proving:

1) ¢(&) C flx)

Let b € @(¢). Then there is a po € |loy|
such that (uo,b) € ¢ and |po| C €. We know
that ¢ Zo—, f and thus ¢ C Dy, U Noos,.
Since ¢ Z, « and |pg] C & we have that
(to0,0) € No—,. But we also know that
(0,0) € Dy—y, U Ny, and, therefore, (ug,b)
isin Dy—,. As a consequence of ¢ Z,_,, f, we
have that my—,(¢ N Dy—,) = f, which entails
that (7, (|uol),b) € f. Since & Z, z, it holds
that 7, (£ N D,) = 2. Hence, as we have that
|po] € &, we also have m,(|po|) € 2. And,
finally, we get b € f(z).

i) f(z) C e(€)

Let b € f(z). Then there is a (zg,b) € f such
that 2o C z. By Definition 3, since ¢ Z,_,, f,
then o N 751, (z0,b) € I, (20, b). Given that
¢ T, x and g C z, we are in the conditions
of Lemma 1 and, therefore, &g = &€ N 771 (z0)
is such that &y Z, xo. Then, by definition of
I, there is a pg € | ! om| such that (po,d) €
¢ and |po| C €. Which leads to b € ¢(¢).

We shall now prove that the righthand side im-
plies the lefthand side. Let ¢ and f be cliques of
(0 =), and (o — ¢, respectively, such that

Vé,x (£1o = ¢(§) = f(z)).

Let (po,b) be in ¢ \ Noy,. Given that (pg,b) &
Ny, there are ¢ and z cliques of ¢, and oy re-
spectively, such that ¢ Z, = and |uo| C & By
hypothesis we have that ¢(¢) = f(z), and, since
b € ¢(¢), we have that b € f(z). By Defini-
tion 3 we know that & = & N D, is such that
& Iy . So b € (&) and, hence, there is a
vy € |7Lam| such that |vg| Can & and (vg,b) € .
Both pg and vg are subsets of £, which means that
Ho Tho Vo. But, since (uo, b), (vo,b) € ¢, we have
o =1 vo and, thus, pg = vg. Therefore, given
that |po| C & € D, and & Z, z, it holds that
(/101 b) € Do—>L-

We have shown that, for any (po,b) € ¢, if
(t0,b) & Ny, then (uo,b) € Dy—,. Which means
that

¥ g Dcr—n U iTVa'—H-

Let us now prove that mTo—,(¢ N Dys,) = f by
proving;:



i) Wa—n(tp N Do—n) cf
Let (p0,b) € 9N Dy, From the definition of
Dy, we get that || € D, and that there are
¢ and x cliques of o, and o respectively, such
that £ Z, 2 and |puo| C €. Let 29 = 75 (|10l),
which is a subset of 2. By Lemma 1 we know
that
o = &N (xo)

is such that & Z, zo. Since |uo| C 7% (x0)
and |po| C & then b € ¢(£o). By hypothesis
©(&) = f(zo) and, thus, b € f(zo). There is
then a z1 Can xo such that (z1,b) € f. We
use Lemma 1 once more to get that

& =¢énmH(z)

obeys &1 Z, x1. By hypothesis, we know that
b € ¢(&1). Then there is a py € [loy,| such
that (p1,b) € ¢ and |p1]| C &. Since |po| and
|p1] are subsets of &, then pg <y pi. But
(1o, b) and (u1,b) are in @, so pg = p1 and,
then, o (|p1|) = zo. Hence, 29 C m5(€1). We
know that &; Z, 21 which entails 7, (&1) = 24
and, then, xo C x;. But #; C zg and, thus,
zo = z1. Finally, 7o, (0, b) = (21,0) is in f.

11) fC Mo (80 n Da—n)
Let (z0,b) € f. By Proposition 1, since zg
is finite, there is a clique ¢ of o, such that
E Ty zg. Let &g = £ N Dy, for which it holds
that &y Z» xg, by Definition 3. Since b € f(z¢),
by hypothesis we obtain that b € ¢(£). And
then there is a po € | ! 0| such that (uo,b) € ¢
and |uo| C &. Therefore, given that & C D,
it holds that |po| € Ds. Let 21 = 75 (|1t0])-
Then, since 7, (&) = 2o, we have that z; C zo.
We are in the conditions of Lemma 1, and then

& =& N (zr)

is such that & Z, ;. Since b € (&), then,
by hypothesis, b € f(z1). Hence, there is a
(z2,b) € f such that 29 C z;. But 21 C g
and then zs s zg. Since both (z2,b) and
(20,b) are in f, we have that 22 <, 2o and,
thus, 2o = 29. But 27 C 29, which entails
that z; = zo and, therefore, g = 7, (|p0l)-
Then (29,b) = To—, (to, b) and, since (po, b) is
in both ¢ and 7%, (20,b) C D,,, we have

o—1L

that (20,b) is in oo, (e N Do,).

Let &€ be a clique of oy, and (zo,b) € f. If £ Z,
xo then, as we have shown just above, there i1s a
pio € | om| such that (uo,b) € ¢ N 772, (20,b) and
|po] € €. Which means that

¥ n ﬂ-;in (an b) € Ia—n (1‘0, b)

So Ty, f. n
At this point, we trivially get that R, is onto for
the finite cliques of o, at any simple type.

Theorem 1 Let o be a simple type.

i) Let x be a finite cligue of o5. Then there is a
clique & of oy, such that € R, x.

ii) Ry is functional.

Proof: Part i) is a direct consequence of Propo-
sition 1 and Proposition 2.

Part ii) is easy shown by induction on the types
by use of Definition 2 and 1i). .

4 The extensional collapse

We shall start by defining, by means of R, a rela-
tion on the cliques of o, , the homogeneous relation.
We shall then prove that this relation is the exten-
sional collapse relation, as usually defined in the
literature.

Definition 4 Let o be a simple type. The homo-
geneous relation ~,C 0, X 0y, 15 given by: € ~, (
iof there 1s a clique © of os such that £ R, = and
(Rs .

The homogeneous relation is a partial equiva-
lence relation at every simple type, as may easily
be checked. Observe that it is partial indeed, since
P(((151)=1)=1)— 15 non-empty, as we have seen in
Section 2.

Definition 5 Let o be a simple type. The exten-
sional collapse relation ~,C o, X 0, is inductively
given by:

-~z yife=y;

Rg_s, ¥ if, for every & and ¢ cliques of oy,

o ¢ = (&) =, ¥(().



Observe that the extensional collapse relation is a
logical relation. It is also, trivially, a partial equiv-
alence relation at every simple type.

Proposition 3 Let o be a simple type. For every
¢ and ¢ cliques of o,

5~0C Zﬁ 5N0C-

Proof: We prove this result by an induction on
the type. It trivially holds for type ¢, so let us admit
the inductive hypothesis.

Let ¢ and ¢ be cliques of (¢ —¢),,. We shall
start by proving that ¢ ~s_,, ¢ entails ¢ ~s—, .
So let ¢ and 9 be such that ¢ ~,—, ¢. Then, by
Definition 4, there is a clique f of (¢ — 1), such
that ¢ Ry, f and ¢ Ro, f.

Let & and ¢ be cliques of o, such that & =, (.
Then, by inductive hypothesis, & ~, (, which
means that there is a clique z of o5 such that & R, z
and ( R, z.

By Definition 2 we have that:

since £ Ry # and ¢ Ryos, £, 9(€) = F(2);
since { Ry z and ¥ Ry, f, ¥(C) = f(2).

Which entails that ¢(&) = ¢({).

We now prove the other implication. Let ¢ and
1 be such that ¢ ~,_, ¥.

Let x be a finite clique of os. By Proposition 2,
there is a clique ¢ of o,,, such that ¢ R, x. Let
f be the function mapping each z above to ¢(§).
The function is well defined:

Given & and &, cliques of o, such that
& Ro z and & R, z, it holds that, by
Definition 4, & ~, 5. Then, by applica-
tion of the inductive hypothesis, & ~, £3.
Now, as &,_,, 1s a partial equivalence re-
lation, it holds that ¢ &, ¢ and, then,

p(&1) = p(&2).

Observe that f is only defined on the finite cliques
of 0.

f is monotone. Let 1 and x5 be finite cliques of
o such that xy C z5. By Proposition 2, there is a
clique &5 of oy, such that £€s R, #2. Since R, and
T, are the same relation, we are in the conditions
of Lemma 1 and & = & N 771 (z1) is such that
&1 Ro z1. By monotonocity of ¢ we then have that
©(&1) C p(€2), which is the same as f(z1) C f(22),
by construction of f.

f is stable. Let x1 and x5 be finite cliques of o
such that z, U x5 is still a clique. By Proposition 1,
there is a clique ¢ of o, such that ( Z, #1 Uxs. Let

G =¢nry(z) and & = ¢ Ny t(z).
Since 771 (21 Nzs) = 77 (x1) N 77 (22), it holds
that

GNG=Enm; (zNes),
so, by Lemma 1 and since Z, and R, are the same
relation,
(1N Ry &1 Nxo.

Hence f(z1 Nz2) = ¢({1 N¢2). But ¢ is stable and
so we get:

i nza) = ¢(C) Ne(C).
We know that {; and (5 obey, by Lemma 1, {1 Z, 21

and (5 Z, x2. Then, since Z, and R, are the same
relation, we have p(¢1) = f(z1) and p(€2) = f(z2).
Hence,
flzrNas) = f(z1) N fla2).
Since f is monotonous we may extend it by con-
tinuity. This extension, f, is given by®:

fle) =

It is easy to derive, from the same properties of f,
that f is monotone and stable. Furthermore f is,
by construction, continuous, which means that f is
a clique of (o — ¢),.

Let & and x be cliques of o, and o, respectively,
such that ¢ R, x. Since R, and Z, are the same
relation on the finite cliques of o, for any g Ca, ®
we are in the conditions of Lemma 1. Let then

€(xo) = €N (7" (20) U No),

which obeys &(z¢) Ro 2o, and thus, by definition,

f(zo) = w(&(x0)). As {&(x0) /20 Can 2} is a di-
rected family, we get, by the continuity of ¢,

fl@)={J el@))=¢( |J &) =e(&).
ZoCfin® zoCtin®

Since, by Definition 4, we have that £ ~, £, the in-
ductive hypothesis yields that  ~, £. This entails

that (&) = ¥(€) and, therefore, ¥(&) = f(x).
We have shown that, by construction of f, we
have ¢ Ro, fand ¥ Ro, f. So, p ~o, Y. m

5This standard construction extends any monotone func-

tion on finite sets to a continuous function. Monotonocity
ensures that the extension is well-defined.



5 The full hierarchy of simple
types

The product hierarchy of simple types is defined in-
ductively by ¢ := |0 — |0 x 0. Let o and 7 be
two types in this hierarchy.

We interpret the type o x 7 in the set-theoretic
semantics by the coherence space (¢ x 7),, whose
web is {1} x |os| U {2} x |75|, with the following
coherence relation:

if a1 &4 ay
if b1 &4 bo

for all @ € |o| and b € |7|.

(1,&1) OO'XT (1,&2)
(2,b1) Toxr (2,b2)
(1,a) Toxr (2,5)

The interpretation in the multiset-theoretic seman-
tics is similar, replacing s with m.

If £ and F are two sets and if A C {1} x E U
{2} x F we denote by A’ the set {a/(i,a) € A},
fori=1,2.

We extend the heterogeneous relation to the type
o x 7 by defining, for any ¢ and x cliques of (¢ x 7),,
and (o x 7), respectively:

ERoxr x if El Ro z' and 52 R, z2.

The heterogeneous structure Hy, - is defined as

follows:

Dyxr = {1} x Dy U{2} x Dy;

- Toxr(l,a) = (1,7, (a)) and
7ra><r(2;ﬁ) = (257rT(ﬁ))1

Noxr = {1} x N, U {2} x N;;
given (1,a) and (2,b) in |(o x 7),],

Lo (1, a) ({1} x¢/E€1,(a)}
Lox7(2,b) ({2} x¢/¢el(b) ).

Observe that H,x, has both properties i) and ii)
of Proposition 1, by use of the proposition for H.
and H,. Then, to prove that Proposition 2 holds
for the product hierarchy of simple types, we just
have to combine its proof with the fact that, for
any types o and 7 in this hierarchy,

ELowr x iff 51 Z, z' and 52 I, xz,

as may easily be checked by use of Definition 3.
Observe that, therefore, Theorem 1 holds for this
hierarchy.
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The extensional collapse relation is extended to
the product hierarchy of simple types in the follow-
ing way. Given any types ¢ and 7 in this hierarchy,
for any ¢ and ( cliques of (¢ x 7),,

ERoxr ¢ i &' mp ¢Fand €2 &, P
One can easily show that Proposition 8 holds for
the product hierarchy of simple types.

Let us now consider the full hierarchy of simple
types. Any type of this hierarchy is of the form

o1 (ca=2(..=(on—10)..))

where, for each i € {1,...,n}, o; is a type in this
same hierarchy. To each simple type ¢ in the full
hierarchy of simple types we inductively associate
a type @ in the product hierarchy of simple types
in the following way:

L

o1 (.2 (on20)..) = TiX...XTp—t
We also associate to each type o in the full hi-
erarchy of simple types, two A-terms, A, : 0 = @

and B, : ¢ — o, by mutual induction:

A, = 1d,
B, = 1d,
Ay = AzEA (y1, .. .,yn>Elx”‘XE" .
_ ()(Boy)y1 - - - (Bo, )yn
By = Ay¥zi.ozln.

() (Ae))z1, -+, (Ag, )2n)

where ¥ denotes o1 = (... = (0, = 1) ...).

This terms have a property from which we will
derive the extension of Proposition 3 to the full hi-
erarchy of simple types. We denote fn-equivalence
by equality.

Lemma 2 Let o be a type in the full hierarchy of
simple types. Then:

B, 0 A, = 1d,.

Observe that it also holds that A, o B, = Id,,
which establishes an isomorphism between the full
hierarchy of simple types and the product hierarchy
of simple types.

In general, neither A, nor B, are typed in those
two type hierarchies. Nevertheless, they are typed



in the type hierarchy given by ¢ :=¢|o0 — 0| o x 0,
to which we extend both set-theoretic and multiset-
theoretic intepretations. We also extend the hetero-
geneous relation and the extensional collapse rela-
tion to this hierarchy.

The fundamental lemma of logical relations
yields that, for any type o in this hierarchy, if T'
is a closed A-term of type o then, since R, and =,
are logical relations:

[Tlm Ro [T]s and [T]m =6 [TTm

where [T],, and [T]s are, respectively, the

multiset-theoretic and the set-theoretic interpreta-
tions of T', defined in the usual way.

We are now in conditions of proving the following
theorem.

Theorem 2 Let o be a type in the full hierarchy
of simple types. For every & and { cliques of oy,

g"‘ac Zﬁ €%aC~

Proof: We start by proving that the lefthand side
implies the righthand side. By Definition 4, there
is a z clique of o such that ¢ R, z and { R, .

By use of the fundamental lemma of logical re-
lations, we get that [A]m Ro—z [A]s and then, by
Definition 2,

[Alm(§) Rz [Als(z) and [A]n(C) Rz [A]s(2),
which entails
[Alm (&) ~7 [Alm ().

But Proposition 3 holds for the product hierarchy
of simple types and, therefore,

[ADm (&) ~z [Alm(C)-

The fundamental lemma of logical relations
yields that [B]m ®—o [B]m and, hence,

[Bm ([ATm(€)) ®o [Blm ([ATm(C))-
We finally use Lemma 2 to get that
£ o (.

Let us now prove that the righthand side implies
the lefthand side. Using the fundamental lemma of
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logical relations, we get that [A],, ~,—7 [A]s and
then, by Definition 5,

[A]m (€) ~7 [Alm(C).

But Proposition 3 holds for the product hierarchy
of simple types and, therefore,

[A]m (&) ~z [Alm(C)-

Hence, by Definition 4, there is a clique z of 7
such that [A]m(¢) Rs @ and [A]m(¢) Re z. By the
fundamental lemma of logical relations we know
that [B]m Rz—o [B]s and, therefore, by Defini-

tion 2,

[Blm ([ (€)) Ro [Bs(2)

[Blm (IAIm(¢)) Ro [Bs()
which entails that, by Definition 4 and Lemma 2,

5~0C-
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