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What we study at CFM

Predictors of an asset’s future price return

Markovian mono-frequency predictor pt

Risk control
Maximal position |πt | ≤ M

Costs of trading (spread costs, impact costs)

Linear Costs Γ|π̇t |

How to trade optimally under these constraints

That’s the subject of this talk . . .
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Statement of the problem

If we note rt = Pricet+1 − Pricet , we want to maximize

L =

∫
(E [rt | pt ] · πt − Γ|π̇t |) dt with |πt | ≤ M

For the sake of simplicity, we consider the predictor to be equal to its instantaneous
prediction:

E [rt | pt ] = pt

Hence, our objective is to maximize:

L =

∫
(pt · πt − Γ|π̇t |) dt with |πt | ≤ M



Conditions on the predictor

Moreover, the predictor pt is required to be:

(i) positively auto-correlated:

∀q, P(pt+1 > q | pt ) increases with pt

(ii) Markovian:
∀ωt+1, P(ωt+1 | pt , pt−1, . . . ) = P(ωt+1 | pt )

(iii) symmetric:

∀q, P(pt+1 > q | pt = p) = P(pt+1 < −q | pt = −p)

(iv) unbounded:
∀q, ∃εq > 0 s.t. P(pt+1 > q|pt = 0) > εq



The naive strategy

Integrated predictability at t =∞:

p∞(pt ) =
∞∑

n=0

E [pt+n | pt ] = E [ Price∞ − Pricet | pt ]

An intuitive strategy is to go to MaxPos any time we have |p∞| > Γ (i.e. when we beat
our costs)

⇒ profitable, but not optimal

Th
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Optimal behaviour

Using Bellman’s dynamic programming, one can prove that the optimal strategy is a
threshold system, i.e. there exists a threshold q such that:

πt =


M if pt > q
−M if pt < −q
πt−1 if |pt | ≤ q

One also proves that there exists a function g(pt ) such that g(q) = Γ, which satisfies:

g(pt ) = pt + Γ [P>q(pt )− P<−q(pt )] +

∫ q

−q
g(p′) P(p′|pt ) dp′

where 
P(p′|pt ) = P(pt+1 = p′ | pt )

P>q(pt ) = P(pt+1 > q | pt )

P<q(pt ) = P(pt+1 < q | pt )
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The self-coherent equation

Hence, “all we need to do” to find q is to solve the following self-coherent equation:

i) ∀p, g(p) = p + Γ [P>q(p)− P<−q(p)] +

∫ q

−q
g(p′) P(p′|p) dp′

ii) g(q) = Γ

But it happened to be much trickier than we originally thought !
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A new method

The intuitive idea is to do the following:

1. Suppose that the threshold q is known in the future.

2. Calculate in which cases it is worth switching your position at present time.

3. The threshold will be the break-even value.



Path integrals

Starting at p ≤ q with π = −M, is it worth trading ∆π ?

−2

0

φ

φ

1

2

Γ
− q

q
p

Suppose that we do trade ∆π, then:

Path φ1

Proba = P(φ1|p)
Gain = ∆π ·

∫
z φ1(z)dz

Cost = 0

Path φ2

Proba = P(φ2|p)
Gain = ∆π ·

∫
z φ2(z)dz

Cost = 2Γ ·∆π



Path integrals

Hence, it is worth trading if, and only if:

∆π ·
|φe|≥q∫
φb=p

−q<φ(z)<q, z∈]0,Tφ[

[ ∫
z
φ(z) dz − 2Γ · 1{φe≤−q}(φ)

]
P(φ|p) Dφ ≥ 0

where φ is any path of length Tφ, starting at φb and ending at φe.

As q determines the exact frontier where it is worth trading, we have:

|φe|≥q∫
φb=q

−q<φ(z)<q, z∈]0,Tφ[

[ ∫
z
φ(z) dz − 2Γ · 1{φe≤−q}(φ)

]
P(φ|q) Dφ = 0

Although more sophisticated, this equation will be simpler to solve !
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Ornstein-Uhlenbeck predictor

Consider now an Ornstein-Uhlenbeck predictor:

dp = −εp dt + β dXt

If we note

L(p) =

|φe|≥q∫
φb=p

−q<φ(z)<q, z∈]0,Tφ[

[ ∫
z
φ(z) dz

]
P(φ|p) Dφ

P(p) =

φe<−q∫
φb=p

−q<φ(z)<q, z∈]0,Tφ[

P(φ|p) Dφ

then the equation becomes:
L(q) = 2Γ · P(q)
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The Kolmogorov backward equations

With Itō’s lemma one can prove that L and P satisfy :

1
2
β2 ∂

2L
∂p2

− εp
∂L
∂p

= −p

1
2
β2 ∂

2P
∂p2

− εp
∂P
∂p

= 0

with initial conditions {
L(q) = 0
L(−q) = 0

and

{
P(q) = 0
P(−q) = 1



Solution

One obtains :

L(p) =
1
ε

(
p −

q
I

∫ p

0
eav2

dv
)

P(p) =
1
2

(
1−

1
I

∫ p

0
eav2

dv
)

with

I =

∫ q

0
eav2

dv and a =
ε

β2
.

Hence:

q =
β
√
ε

F−1

(
Γε3/2

β

)
with F (x) = x − e−x2

∫ x

0
ev2

dv



Properties of the solution

The solution can also be expressed as a threshold on the integrated
predictability p∞:

q∞ = Γ · H
(
σ∞
√

2
Γ

)
with H(x) = x F−1

(
1
x

)
.

where σ∞ = β√
2ε3

is the standard deviation of the integrated predictability.

When Γ� βε−3/2, then:

q =
3

√
3
2

Γβ2

Comparison with simulation results:
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Connection with Richard Martin’s results

By pure chance, Jean-Philippe encountered Richard Martin while we were writing our
article, and discovered that he had a very similar formula in an apparently different
context1 :

(
3σ2ε

2b

)1/3

with


ε → Γ

σ → β
√
ε

b → ε

This result was in the case of a quadratic risk control, i.e. where we optimize the
following:

L =

∫ (
pt · πt − Γ|π̇| − λπ2

)
dt

Can we generalize our path-integral technique to also solve this problem ?

1Mean reversion pays, but costs, R. Martin & T. Schöneborn, Risk Magazine, 2011.
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Band system

It is a well-known fact2 that, for a quadratic risk control, the optimal system is a band
system, also known as a DT-NT-DT system.

p

L

U

Discrete Trading

Discrete Trading

p(  )π

No Trading

p(  )π

p(  )π

where p(π) = 2λπ

2Portfolio selection with transaction costs M. Davis & A. Norman, Mathematics of Operations Research, 1990.
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The idea

To a predictor value p1 we associate the value of the predictor whose upper bound is
the lower bound of p1, i.e. u(p2) = `(p1) = `.

1
p

2
p

L

U



The idea

To a predictor value p1 we associate the value of the predictor whose upper bound is
the lower bound of p1, i.e. u(p2) = `(p1) = `.

−2

0

1
p

2
p

Γ

L

U

Being at π = ` with a predictor p = p1, we wonder if it is worth
buying an infinitesimal amount δπ

⇒ this gives a first equation relating p1, ` and p2.
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To a predictor value p1 we associate the value of the predictor whose upper bound is
the lower bound of p1, i.e. u(p2) = `(p1) = `.

−2

0

1
p

2
p

Γ

L

U

0

−2Γ

Being at π = ` with a predictor p = p2, we wonder if it is worth
selling an infinitesimal amount δπ

⇒ this gives a second equation relating p1, ` and p2.



The band equations

φe≥p1 ∨ φe≤p2∫
φb=p1

p1<φ(z)<p2, z∈]0,Tφ[

[ ∫
z
(φ(z)− `) dz − 2Γ · 1{φe≤p2}(φ)

]
P(φ|p1) Dφ = 0

φe≥p1 ∨ φe≤p2∫
φb=p2

p1<φ(z)<p2, z∈]0,Tφ[

[ ∫
z
(φ(z)− `) dz + 2Γ · 1{φe≥p1}(φ)

]
P(φ|p2) Dφ = 0



The band equations

If we note

L(p) =

φe≥p1 ∨ φe≤p2∫
φb=p

p1<φ(z)<p2, z∈]0,Tφ[

[ ∫
z
φ(z) dz

]
P(φ|p) Dφ

T (p) =

φe≥p1 ∨ φe≤p2∫
φb=p

p1<φ(z)<p2, z∈]0,Tφ[

[ ∫
z

dz
]

P(φ|p) Dφ

P(p) =

φe≤p2∫
φb=p

p1<φ(z)<p2, z∈]0,Tφ[

P(φ|p) Dφ

then the equations become:

L(p1)− ` · T (p1)− 2Γ · P(p1) = 0

L(p2)− ` · T (p2)− 2Γ · P(p2) = 0



Kolmogorov backward equations

1
2
β2 ∂

2L
∂p2

− εp
∂L
∂p

= −p

with initial conditions L(p1) = L(p2) = 0

This gives :

L(p) =
1
ε

(
p −

p2 − p1

I

∫ p

p1

eax2
dx

)
with

a =
ε

β2
and I =

∫ p2

p1

eax2
dx



Kolmogorov backward equations

1
2
β2 ∂

2T
∂p2

− εp
∂T
∂p

= −1

with initial conditions T (p1) = T (p2) = 0

This gives :

T (p) =
2aJ
ε

(
1
I

∫ p

p1

eax2
dx −

1
J

∫ p

p1

eax2

[∫ x

p1

e−ay2
dy

]
dx

)

with
J =

∫∫
p26x6y6p1

ea(x2−y2) dx dy



Kolmogorov backward equations

1
2
β2 ∂

2P
∂p2

− εp
∂P
∂p

= 0

with initial conditions P(p1) = 0 and P(p2) = 1

This gives :

P(p) =
1
I

∫ p

p1

eax2
dx



Solution

The lower bound value is

` =
e−ap2

1 − e−ap2
2

2a
∫ p2

p1
e−ax2 dx

where p2 is given by:

p1 − p2 = 2Γε− Ie−ap2
1 +

J · (e−ap2
1 − e−ap2

2 )

I′

with :

a =
ε

β2
, I =

∫ p2

p1

eax2
dx , I′ =

∫ p2

p1

e−ax2
dx , J =

∫∫
p26x6y6p1

ea(x2−y2) dx dy

And similarly for the upper bound.



Asymptotic behaviour

1
p

2
p

L

U

b
1

B

b
2

If p1, p2 → 0 then
b1 − b2 → 0 (symmetric band)

If p1, p2 → +∞ then

b1 → 0 (totally asymmetric band)



Asymptotic behaviour

1
p

2
p

L

U

b
1

B

b
2

If p1, p2 → 0 then

B → 2 3

√
3
2

Γβ2 (Martin and Schöneborn’s result)

If p1, p2 → +∞ then

B →
√

2Γε p1 (infinite band size)



Final remark on risk control

Quadratic risk control could actually be replaced by any risk control of the form

R(π) = λ|π|z with z > 0

Indeed, only the relation between the predictors space and the positions space
changes.

More precisely, the positions space is a topological deformation of the predictors
space given by the function R′(π).

The MaxPos constraint can itself be seen as a risk control of the form

R(π) = λ
( π

M

)z
with z → +∞

Thus, the threshold system can be seen as a degenerate form of a band system,
with a strong deformation of the positions space.
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