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Abstract 64 : FAA — GAA, for A object inC, such that the fol-
lowing diagram commutes:
We provide in this article two characterisation results,

descriping exactly which terms verify the dinaturality dia F[B, B| b5 G[B,B
gram, in Church-style system F and in Curry-style system F. Flu,B] G|[B,u]

The proof techniques we use here are purely syntactic, / \
giving in particular a direct construction of the two terms ~ F'[C, B] G[B,C]
generated by the dinaturality diagram. But the origin of \
these techniques lies in fact directly on the analysis of sys FlC.u] Gl

: F[C,C] G[C,C]
tem F through game semantics. o

Thus, this article provides an example of backward engi-

neering, where powerful syntactic results can be extracted for every morphismu: B — C'in C.
from a semantic analysis. Unfortunately, dinatural transformations do not compose

in general, so we cannot build a category with this structure
However, there are some special cases where composition
works properly: it was the case in [10] and [5], and again in
this article we will not get any trouble regarding composi-
tion.

Di_nathaIity. In this arti_cle we solve_an open problem Appearances of dinaturality in computer science in-
raised in [10]: the analysis of dinaturality for second@rd | de in particular the formalisation of parametric poly-
lambda-calculus. morphism (see below) and the theory of traced monoidal

Dinaturality is a categorical notion that has appeared in categories [13], notably their relations with fixpoint oer
logic since [2]. The idea behind this is to consider a type g [11].

A with a free variables{ as a functor, which associates to
each typeB the typeA[B/X]. This raises a problem when o .
we apply the functor to a morphism: indeed, if we consider Characterisation of dinatural terms.  Rather than com-
for exampleA = X — X, it is well-known that the first position, the problem we are interested in is to check
occurrence of has to be contravariant, whereas the secondWhether, in a given syntactic category, every teractu-

one is covariant. Thus. the functors we need have the form &y defines a dinatural transformation, when considering
’ the family (t[4/X])a (where A describes the set of all

F:C®xC—C types).

It was shown in [10] that this is true for simply-typed
whereC is the category to be considered (in this arti€le  lambda-calculus. This means that every term in this cal-
will be a syntactic category). culus satisfies a general and non-trivial property, stated b

What is then the good notion of morphism between two the dinaturality diagram. This is the origin of the famous
such functord”, G : C°? x C — C ? A reasonable answer theorems for freef Wadler [26].
to this question is the notion afinatural transformation But the authors of [10] insisted that they did not solve the
(see [15]) that extends the natural transformations to thisproblem in the more general case where there is a second-
new kind of functors. A dinatural transformatiérbetween order quantification in the grammar of types. The corre-
F andG, denoted) : F=@, is a collection of morphisms  sponding calculus, called system F, was discovered by Gi-
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rard [8] and Reynolds [22]. There are two main presenta- and [4]. It was proved in [3] that by carefully generalis-
tions of system F, that we will both study in this article: ing the copycat expansion process, one can exactly describe
Church-style system F, where types appear explicitly in the the dinaturality diagram in game semantics; in fact, one ob-
terms, and Curry-style system F where, on the contrary, thetains the processes corresponding in games to the upper and
terms contain no type indications, and the language of termdower expansions described in this article (and simple ex-
is the pure lambda-calculus. In this article, Church-s¢gle ~ pansion is just a special case of these two expansions).
guents are noted I ¢ : A, whereas Curry-style sequent are Thus, what we do in this article can be considered as a
notedI” k¢, 7 : A. form of backward engineering from a notion already un-

Itis in fact easy to realise that the dinaturality propesty i derstood in game semantics, we extract a purely syntactic
not satisfied any more with system F: as we shall see (and aapproach of the problem, that we use to prove our charac-
can be seen directly by checking the diagram), in Church-terisation results. Note that the characterisations night
style system F the term= \z"Y-(Y=Y) \yX (2){ X}y is proved directly in game semantics, using full completeness

not dinatural inX; that is, the family(¢[A/X]) 4 is not a di- results. But for the sake of simplicity, it is easier to use a

natural transformation. For Curry-style system F, the ques syntactic translation of the game mechanisms.

tion is more tricky, but again the dinaturality will not bei&r A similar approach was taken in [14], where a purely

in general. syntactic study of exceptions and continuations was pro-
In the present article we provide tweharacterisation posed, arising from a game semantics analysis. Other, more

results: the first is for Church-style system F, for which direct applications of game semantics for dealing with syn-
we show that a term is dinatural inX if its normal form tactic problems concern model-checking [20] and type iso-
contains no type instantiation whepé appears as a free  morphisms [16, 4].

variable. The second result is for Curry-style system F: we
show that a termr such thatl’ ¢, 7 : A is dinatural in

X if and only if there exists a Church-style termequal

to 7 modulo type erasure and such that- ¢ : A, which
contains no type instantiation whepé appears as a free
variable. Both characterisations are decidable.

Connections with parametricity. One interesting feature
of dinaturality, already noted in [2], is its connectiongiwi
parametric polymorphism.

In a polymorphic language (or in a model of polymor-
phism), a functionf of typeVvX.A is calledparametric if
its behaviour does not depend, intuitively, on the value of

Proof techniques. To prove these results, we use purely the argument given foX. This notion was introduced by

ot s st o Stache [5) and analysed by Reynols i s o
P p ’ y of relational parametricity [23]. Relational parametrci

a certain subset of terms, and we prove that, for these terms,

i Lo was first a semantic idea, but it was later translated syn-
the two terms produced by the dinaturality diagram happentaCtiCaII [1, 21] trough a language refining Church-style
to be both equal to the result of the simple expansion; thus, y b 9 guag g

these terms are dinatural. For the other terms, a very s,impIeSySt?m F . . . .
Dinaturality was proposed in [2] as an alternative cri-

argument shows that they are not dinatural. . o .
terion for parametricity, and the property was analysed in

Curry-style system F is defined here as the Church-style , . .
system F modulo type erasure. And to deal with dinatural- Reynolds PER_n_oneI. Then_m [21] '.t was shown that rela-
tional parametricity implies dinaturality at a syntacewvél.

ity in this system, we will need to completely describe the X .
result of the dinaturality diagram for Church-style terms. Startlng from th? fact thgt Church—st.yle system F |Fselfsjoe
not satisfy the dinaturality property, it was argued in [8it

Hence, we introduce ampper expansionand alower ex- nother condition. restricting dinaturality to Simpl
pansion and we prove that they correspond respectivelya other condition, restricting dinaturaiity to simple &
(i.e. types without second-order quantification), was aamor

to the upper term (or morphism) and the lower term in the ble criterion f ricit
dinaturality diagram. From this we extract a proof of char- sensible criterion for parametricity. o
However, as explained in [3], this last criterion is still a

acterisation of dinatural Curry-style terms. )
y sy bit too strong for some languages or models that should be

Thus, the article will not only give us these two charac- ) ; :
terisation results, but also provide a complete descrigifo considered as parametric. Thus, the present work might be
useful in the tedious quest for a perfect parametricityeerit

the terms given by the dinaturality diagram. ion

But if the techniques used in this article are purely syn-
tactic, their origin lie in fact on a semantic ground: namely
on game semantics Indeed, in games, the above expan-
sions are related to a process that is already well-known by
those interested in games for system F:¢bpycat expan- In this article we will focus mainly on Church-style sys-
sion, appeared implicitly in [12] and more explicitly in [19] tem F, the variant of system F where explicit types appear in
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the terms. In fact, even Curry-style system F will be studied
through an analysis of the Church-style case.

The grammar and rules of this system are shown on Fig-
ure 1, whereFTV(T) is the set of free type variables in
all types appearing ii’, FTV(¢) the set of all free type
variables in all types appearing inand FV(¢) the set of
all free term variables irt. For example, for the term
t =AY XX~V (2){Z — Y} we haveFTV(t) = {X, Z}
andFV(t) = {z}. The equality in this system, denoted
=r, is the congruence relation resulting from the equalities
given at the end of Figure 1.

The set of all second-order types is callegpes. Note
that we do not consider the product typex B in the gram-
mar of system F: this is only for the sake of simplicity, to
avoid making our proofs more technical. In fact we could
do all the proofs of the article, and obtain the same results,

in a case where we have a product type. As this construc-
tion is not an essential part of system F, we chose to ignore

it here. Finally, for a first reading it may be useful to forget
about the type indications in the lambda-abstraction$:
ignoring them will make many further constructions much
simpler.

We introduce two specific notations on system F that will
be of great use throughout the article:

e introducing a new atomic typé (which will be used
only in this definition), we callV(A) the type vari-
able appearing on top of the typgif this variable is
free, V(A) = L otherwise; this means, inductively:
V(X)=X,VLl)=1,VB — A =V(A) and
V(VX.A) =V(A[L/X])

given a termt, we noteZ(t) the set of all free type
variables in all type instantiationSD} appearing in
t. Note thatZ(t) C FTV(¢) but they are not equal
in general: indeedX might appear irt as a lambda-
abstraction even iX ¢ Z(¢). For example, ift =
ArX \y"YY (y){Z}, thenFTV(t) = {X, Z} whereas
Z(t)=1{Z}.

2.1 Normal forms of system F

Throughout the article, we will consider theormal
forms of the Church-style system F; by this, we megn
long, 8-normal forms:

e a3-normal form is a terni that contains no redex of
the form(Az4.u)v or (AX.u){B}

e ann-long g-normal form is ag-normal formt with
I' - ¢t : A such that, if we apply am-expansion
u — AxP.(u)x or ann2-expansions — AX.(u){X}
anywhere inside, then for the resulting ternd, we
have eithel” ¥ ¢’ : A ort’ is not3-normal.

It is well-known since [8] that any Church-style temn
such thaf - ¢, : A has a unique normal formm= NF(¢),
which can be written

(1)

where:

e eacho; is eitheroftheform\:z:f" (1<j<porAXg
(1<k<P-p)

e there existsB € Types suchthat : B € T U {z; :
Aozt A}

o if oyt Ay,...,zp: Ay F (2) T ... T; : VY. By and
1 < nthenT;, is of the form{ D} with D € Types

o if F,I‘l : Al,...,ZEp : Apl_ (Z)TlTl : Bl —>Bg
andi < n thenT;;; is a Church-style term in normal
formsuch thal’,z1 : Ai,...,2p: Ap F Tiv1 2 By

o if I wy : Av,...,zp t Ap F (2) T ... T, : By then
By is a type variable.

We will define all our operations on Church-style terms
inductively, using this presentation of normal forms. We
introduce a few more notations: given a normal faras
in(1),wesetr(t) =ZifT,z1: A1,...,2p: Ay 2: D
andV(D) = Z, and we note: € T if there existsB ¢
Types suchthat : B €T.

2.2 Syntactic dinaturality

In this article we are concerned with dinaturality at the
level of the syntax - only Church-style system F for the mo-
ment. In this case, the category of interest, calledsthre
tactic category, is denoted’” and defined as follows (for a
given term variable):

¢ the objects are second-order types

e amorphism fromA to B is an equivalence class, mod-
ulo=p, oftermst suchthatt : A+-¢: B

e composition is given by substitution:dif: A+t : B
andz : B F u: Cthenx : A& uft/z] : C, so
composing the class af with the class of gives the
class ofu[t/z], denoted ; u

e the identity is the class of the term

In this category, given a type variab¥, one can asso-
ciate to every typel a functorA[(_, )/ X]: T°"xT — 7.

This functor is constructed as follows. For two types
B andC, A[(B,C)/X] (or A[B, C] for short) is obtained
from A by replacing every positive occurrence Xfby C
and every negative occurrenceXfby B. Inductively, this
means:

e X[B,C]=CandY[B,C] =Y ifY #X
° (Al — AQ)[B,C] = Al[C’, B] — AQ[B,C]



Grammars:
A = X|A—A|VX.A
t ou= x| x| ()t | AX ] (H){A}
Typing rules:
1Ay, A b Ay (@x)
z:AFt: B (= 1)
T'FX4t:A—> B
'+(@u:B
T'Ht: A :
T AX.4:vxA DX ¢ FTVT)
'-t:vX.A
VE
'+ (t){B}: A[B/X] (VE)
Equalities:
oAt =5 tu/7]
A (D =, t if o ¢ FV(t)
(AXt){B} =p2 t[B/X]
AX.(D){X} =2 t if X ¢ FTV(t)

Figure 1. Church-style system F

o (VY.A0)[B,C] = VY.Ag[B,C] with Y # X.

Fortwoterma,vwithx : Ay Fu:Byandx: Ay Fwv:
B,, we first definef — g for f = Az .uwandg = A\z“2.v
as:

f—g=x""%0yM (g)(2)(f)y
sothat- f — g : (B1 — A2) — (A1 — Bs). Thenwe
can define more generally(( f, g)/ X] (or A[f, g] for short)
as follows:

e X[f,g] = gandY(f,g] = idy if Y # X (with
idy = A\zY .z)

i (Al - AQ)[fag] = Al[gvf] - AQ[fvg]

o (VY. Ao)[f, g] = Aa"AolPL AL AY. (Ao[f, g]) (2){V'}
with Y # X.
Finally, we setA[(u,v)/X] = (A[(f,9)/X])z, so that
x: A|(B1,42)/ X+ Al(u,v)/X] : Al(A1, Be)/X]

Thus we obtain two different definitions fei{(_, _)/X],
but depending on the context it will be clear in what follows

whether we usel[(f, g)/X] or A[(u,v)/X]. One can also
write A[(f, B)/X] or A[(B, f)/X] (resp. A[(u, B)/X] or
A[(B,u)/X]): itis just a shorthand forl[(f,idg)/X] or
Al(idp, f)/X] (resp.Al(u, 2)/X] or Al(z, u)/X]).

As the variableX will always be fixed in what follows,
we sometimes use the notatiatjy, 6], or evenA~d, for
Al(~, d)/X] (whatevery andd might be).

Now it makes sense to talk about dinaturality in this cat-

egory:

Definition 1 (dinatural term, Church-style) A term ¢
such thatr : A; F t : As isdinatural in X if the family
(t[A/X]) acTypes is a dinatural transformation; that is, if
the diagram

A B, Bl 2 A, B)

A [C, B] A5[B, C]
Al[c,\u]A ]A/Q[Z,C]

Al[C, C] ErT—— AQ[C, C



commutes, module i, for everyu suchthate : BF w : C.

In what follows, when the typeB andC' are considered
as fixed we note

A= A[(B,0)/X] A= AlC.B)/X]

3 Dinatural terms for Church-style system F

Definition 2 (simple expansion)Let us consider a type
variable X and a normal formt such thatl’ -+ ¢ : A and
X ¢ Z(t). Consider also a ternf such that- f : B — C.

Then we define th&mple expansion of ¢ along f on X
as the term

tLf/X] = &r(t)

whereér(t) is defined, fort written as in (1), by:

() () Uy...U,

if Vp(t) =X
otherwise

—~

with U; = Erua(T;) and:

Ep(t):a...

o @ = AXyif a; = AXy, andd; = Az’ if a; = Ao

L] A:{JiliAl,...,ZEplAp}

e &r({D}) ={D}if D € Types.
Intuition.  Informally, the construction of the simple ex-
pansion can be described as follows:

e we replace each subterfin ¢ of type X by (f) T

A Aj
e we replace each occurrenceaf;” by Az”.

Example. The termt = \zX =X yX.(x)y is in normal
form and such thak ¢ Z(t). Its simple expansion alonfy
on X is then

tf/X] = AP ay () (@) (F)y

With the hypotheses of the definition, the simple expan-
sion verifies:
I[(C,B)/X] F i[f/X] : Al(B,C)/X]
In fact, this term is exactly the term resulting from the di-
naturality diagram. Indeed:

Theorem 1 Let X be a type variable, and, a term such
thatz : A; F tp : A2. Considert = NF(¢), and suppose
that X ¢ Z(t). Then for any terny = \z”. u such that
Ff:B— C,we have:
Ail(u, B)/X]; to[B/X]; A2[(B,u)/X] =F t[f/X]
A[(Cou)/X]5 0]C/X]; Asl(u,C)/X] =p t[f/X]

which implies that, is dinatural in X .

The proof of this theorem is given in Appendix A.

Corollary 1 In the Church-style system F, a tetqis di-
natural in X if and only if X ¢ Z(NF(to)).

PrROOF. Theorem 1 tells usthaX ¢ Z(NF(to)) is suffi-
cient fort, to be dinatural. To prove that it is also necessary,
consider a normal formwith « : A; ¢ : A, such that, for
someD € Types, {D} appears it andX € FTV(D). It
is easy to see that in this case, the dinaturality diagram wil
not commute for every,, because/ D[B/X]} appears in
t[B/X]whereag D[C'/ X} appears in[C'/X] at the same
place.

To be more precise, consides Y and C
Z — Y, whereZ ¢ FTV(t), and setu = \y?.z,
so thatx B F u C. The precompositions by
Aq[(u, B)/X] or A1[(C,u)/X] and the postcompositions
by A5 [(B,u)/X] or As[(u, C')/X] will not give rise to any
(B2-redex(AY.t){D}, so at the end if we note

t® = Ay[(u, B)/XT; t[B/X]; As[(B,u)/X]
£ = A1[(C,u)/X] 5 t{C/X] ;5 Asf(u, C)/X]

we getZ ¢ Z(NF(t*)) andZ ¢ Z(NF(t°")), sot"P and
t°% are not equal module- - in this case. Hence,is not
dinatural. O

Note that the result in [5] for simply-typed lambda-
calculus was apparently slightly more general than our re-
sult for system F: it stated that, anycartesian closed cate-
gory, all the definable morphisms (i.e. those corresponding
to simply-typed lambda-terms) are dinatural. Actually, in
the proof of Theorem 1 we do not use any induction on the
term u, so we can state a similar result here: in any hy-
perdoctriné, the only definable morphisms (i.e. those cor-
responding to system F terms) that are dinatural are those
coming from a termt, such thatX ¢ Z(NF(¢y)). The
proof would consist in replacing every appearance of this
syntacticu by a composition with a morphism

We shall not insist on this point, but simply remark that
we did not really lose any generality by working directly in
the syntactic category.

4 General description of the dinaturality di-
agram

In the above proof of characterisation of dinatural terms,
we only dealt with the dinaturality diagram for a tery
in the case wher&X ¢ Z(NF(ty)). This lazy approach is
enough to do the proof, but a bit unsatisfactory, as we do
not describe all the possible differences between the two
morphisms of the diagram.

1A hyperdoctrine provides a model of Church-style system F,
see [17, 24].



This gap is filled in the present section: staying with
Church-style system F, we describe the dinaturality diagra
in all cases. Thus we give two different constructions on
normal forms,t{u/X], andt[u/X];, which correspond to
the two morphisms of the diagram, and which coincide only
whenX ¢ Z(t).

The interest of this is not only to give a full description
of the diagram, but also to allow to derive the characterisa-
tion of dinatural terms in Curry-style system F: in this gase
there is no trivial argument similar to what we used for the
reciprocal of Theorem 1, so we do need this complete study
of the dinaturality diagram. The characterisation of dinat
ral terms in Curry-style system F will be given in section 5.

4.1 Partial substitution

Our first task is to distinguish, within a given terin
normal form such that’ + ¢ : A, between occurrences
of the variableX that come froml" and A, and those that
appear because of the type instantiations in

This will be done by first enriching our grammar of types
by a new type variabl& *, that we see as a distinct copy of
X (alternatively we can just choose an already existing type
variableX* that does not appear inin I" and in A, nor in
B andC, and such thak * # X).

Then we want to substitut® by X* in ¢, but only when
X is used during an instantiation: in particular, the substit
tion does not occur for a lambda-abstraction lke® when
the X corresponds to an occurrence of type variablé&'in
or in A. Thus we need a notion gfartial substitution,
that can be stated in general@® /X ) with D € Types.
The term resulting from the partial substitution is not nec-
essarily well-typed; in fact, we shall see in section 5 that
dinaturality for Curry-style system F is strongly connekte
to this question of well-typedness.

Definition 3 (partial substitution) Given a terny in nor-
mal form such thaf' ¢ : A, given a type variablé and
atypeD, thepartial substitution ¢(D/X) of X by D int is
defined as the term(D/X | I', A) which is constructed as
follows:

o \Pt)(D/X |T, A — Ag) = Az t(D/X | T U
{$ . Al}, A2>

o (AY4)(D/X |T,VY.Ag) = AY#(D/X | T, Ag)
o (2)T1...To(D/X | T, Ay = (2)Ty...T) with

= T} ={Di[D/X]} f T; = {D;}
- T/ =T,(D/X |, A;) if T; isaterm

where the typed; for 0 < i < n is again defined by
induction:

— Apissuchthat : Ag €T
_Ai+1 :E1 |fAl:E1—>E2

- Ai+1 = Eo[Dl[D/X]/Y] if A; = VY.Ey and
T; ={D:}.

Intuition.  In more practical terms;(D/X) is obtained
from ¢ by replacing any occurrence ¢f in any instantia-
tion { £} by D, and by propagating this replacement at the
level of the lambda-abstractions. This propagation corre-
sponds to the first case in the above induction, wharg

is replaced by\z41.

Example. By applying the partial substitution ot by D
to the termt = \z"Y- (Y =Y) \yX (2){ X }y, we get

HD/X) = X" 0= )yX (2){D}y

In particular, forD = X*, we gett* = ¢(X*/X) =
A"V (Y=Y) Ny X (2){X*}y. Note that this term is not
well-typed in Church-style system F: the subtem{ X *}
requires an argument of type* but is giveny of type X .

4.2 Produced types and expected types

The termt* = ¢(X*/X), for t normal form withI" F ¢ :
A, can be written as:

T, )

t*:al...ap.(z)Tl...
where eachy; is either of the forrmxfj 1<j<por
AX; (1 < k < P — p). But this term is not well-typed
in general. This typing issue is captured by the following
definition:

Definition 4 (Produced types and expected typeskor t*
as in (2) and0 < i < n, we define théth produced
type I14(t*) € Types and theith expected type X4 (t*) €
Types U {}} as follows:

o [1%(t*) = D whereD is such thal’, z; : A4, ...
Ay b z: D, ands0(t*) =

, Tp

e if IL(t*) = By — B, thenX{F'(¢t*) = B; and
H%+1(t*) — B2

o if IIL(t*) = VY.B andT;;, = {D} thenSiH (t*) =
tandIIi (t*) = B[D/Y].

Moreover, as the typH}:(¢*) is always a type variable,
we noteVr (t*) = V(IIE(¢*)) = IIE(t).

Intuition. The idea behind these notions of produced and
expected types is that the subtefm)77 ...7; in ¢* will
have the typdI& (¢*) providedthat eachl; which is a term
has the typeli(t*) (X4L(t*) being set tof if T; is not a



term). SoJI4(¢*) is the typeproducedby (2)7 . . . T; (pro-
vided well-typedness) andi (¢*) is the typeexpectedor
the termT; (to ensure well-typedness).

Of course, the terms; will not always produce the type
¥4 (%), as we have seX # X*. And that is whyt* is not
well-typed in general.

Example. Consider again = \z"Y" ' =Y)\yX (2){ X}y,
forwhicht* = \z"Y-(V=Y) \yX (2){X*}y. The produced
types oft* are

(") =vYYy  I(t") =X*— X*  It") = X*
whereas the expected types are
S =5t =1 Spt) =X*

The lack of typing fort* comes from the conflict between
the expected typ&j(t*) = X* and the produced type
I(y) = X withD = {z: VY.(Y - Y),y: X}.

4.3 The dinaturality diagram

We are now equipped with the tools to express the con-
tent of the two terms resulting from the dinaturality dia-

gram.

Definition 5 (Upper and lower expansions)Let ¢ be a
normal form such thaf' + ¢ : A, and sett* = t(X*/X).
Consider also a ternf such that- f : B — C.

Then we define thepper expansion of t along f on X,
denoted[f/X],, as

tf/ Xu = Tr,a(t)
whereJr 4(t*) is defined, fot* given in (2), by:

if V(4) =X
otherwise

Toalt") = a1 ..a. {Ef; o

with V; = Jrua s, (T;) and:

o a; = AXj if a; = AXy, anda; = Az}’ with
D; = A;[(C, B)/X)[B/X*] if a; = A}’

o forl1 <i<n,¥; =3L(t")

o A={z1:A,...,xp: Ay}

e Jr.a({D})) = {D[B/X")} if D € Types.

We also define thiwer expansion of ¢ along f on X,
denoted|[f/X];, as

tlf/X]i = Kr,a(t")

whereKr 4(t*) is defined, fot* given in (2), by:

Kea(t) =ai...a, (f) (2) Wy ... W, ifVr(t*) =X
o T e W, otherwise

with W; = Krua s, (T3) and:
o o = AXp if oy = AXy, anda; = Az}’ with
D; = A;[(C, B)/X[C/X*]if a; = Aa}
o for1 <i<n,¥; =3L(t")
o A={m: A, ...,xp: Ay}
e Kr.a({D})={D[C/X*]}if D € Types.
Intuition.  Informally, the construction of the upper ex-

pansion (resp. the lower expansion) can be described as
follows:

e we consider the ternt = t(X*/X)

e we replace each subterimin t* of expected typeX
(resp. of produced typ&) by (f) T

Aj D;

e we replace each occurrence ofz;’ by Az

where D; = A,[(C,B)/X][B/X*] (resp. where
Dj = 4;((C, B)/X][C/X~])

e we replace each type instantiatioqD} by
{D[B/X*]} (resp. by{ D[C/X"]}).

Example. Consider once again the term
t = AV NN (o) { X}y, with ¢ =
A"V (Y =Y) Ny X (2){X*}y. The result of the upper
expansion of alongf on X is

tf /X = Aa™ Y0y B () (2){ B}y
whereas the lower expansioniadlong f on X gives
tf/ X = 2" B (@) {CH(fy

These two terms are not equal in general. As these two
expansions will correspond to the two terms resulting from
the dinaturality diagram applied tg this is consistent with
the fact that is not dinatural inX', which we already knew
from Corollary 1.

The symmetry between the upper and lower expansions
lies in the fact tha{/r 4 deals with the type expected for
whereasCr, 4 deals with the type produced by. Note by
the way that in7r 4 the argument' is not used, whereas in
Kr, 4 the argument is not used.

The two expansions verify:
I'(C,B)/X] & t[f/X]u : Al(B,C)/X]
L(C, B)/X] & t[f/X]i : Al(B,C)/X]

In fact, these two terms give us a complete description of
the dinaturality diagram. Indeed:



Theorem 2 Let X be a type variable, and, a term such
thatz : A; F to : As. If we notet = NF(¢g), then for any
term f = A\z®. usuchthat- f : B — C, we have:

Ai[(u, B)/X]; to[B/X]; Az
A[(Cru)/ XT3 tolC/XT

(B,u)/X] =p t[f/X]u
As[(u, C)/ X] =r t[f/X]i

The proof of this theorem is given in Appendix B.

5 Dinatural terms for Curry-style system F
5.1 Presentation of the calculus

Curry-style system F is a variant of system F where there
is no type indication in the terms. Otherwise said, the gram-
mar of terms is the grammar pfire lambda-terms:

T o= Azt | (T)7

The straightforward presentation of the calculus consists
in saying that the typing rules for the second-order quanti-
fier become

FI—CUT:A i
f X ¢ FTV(T
Tty :VX.A ! # ()
IFFeyT:VX.A

[ Fcur: AB/X]

and that we consider terms modulo untypéd and -

equalities. However this naive approach encounters many

troubles regarding the subject reduction of the calculus.
These questions have been analysed in [27, 18]xfor
reduction, and in [7] for-expansion.

We will choose here an alternative approach, by consid-
ering that Curry-style system F is juShurch-style system
F modulo type erasure If we had only thes-equality in

the system, this would be equivalent to the usual presenta-

tion of Curry-style system F. As we also consigezquality,
this approach will allow us to avoid the technical problems
related to subject reduction.

Concretely, we consider the operation of erasure from
Curry-style terms to pure lambda-terms:

erasér) =
erasé z.t) = Az. eraseg-t)
erasé(t)u) = (erasét))eraséu)
eras¢A X.t) = erasé¢t)
)=

erasé(t){A}) = erasét)

A Curry-style sequent is then of the forin k¢, 7 :
A, and it is valid if there exist$ such that erage) = =
andI’ F ¢ : A. We introduce a new congruente=c, u

between Church-style terms by adding to the usual Church-
style equalities the new equality:

t=pu & erasét) = eraséu)

This leads to the following definition for dinaturality:

Definition 6 (dinatural term, Curry-style) Atermr such
thatx : Ay Fcy 7 : Agisdinatural in X if, for everyt such
that erasé¢t) = 7 andx : A ¢ : Ao, the diagram

t[B/X]
A1[B, B] As[B, B]

Alw K{B,u}
A1[C, B] AQ[BaC]
A[C,Cl ——— A3|C, O]

t[C/X]

commutes modulec, for everyu such thatr : B+ u : C.

Of course dinaturality for a Curry-style term only makes
sense in a given typing context: saying thaits dinatural
in X has no absolute meaning, we have to give a typing
sequentr : A; Fcy 7 @ Ao for the question to become
meaningful.

One can define a composition on Curry-style terms,
again by substitution: givem : A F¢, o : B and
x: Blcy7: C,wedefines; T = 7[o/z], and it is easy to
check thatr : A ¢y o;7 : C. Moreover, for two compos-
able Church-style termsandwv, we have

eraséu; v) = eraséu) ;

Thus, given for two termg,,t, such thatz : A,
3] As, x Al F i Ao and eras@l)
eras€ty), and givenu such thatr : B + u : C,
we noteti? = AyuB ; t[B/X]; AxBu andty’
A1uB; t2[B/X]; AQBU then we have:

erasét;’) = eraséA,uB); erasét, ); eraséA, Bu)
= eras€A uB); eraséts); eras€ A, Bu)
= eraséty’)

and similarly for the lower term of the diagram. This simple
remark gives us a powerful lemma:

erasév)

Lemma 1l A termr such thatr : A; Fcy 7 : As is dinat-
ural in X if and only if there exists a Church-style tetrm
such that erasg) = 7, : A; -t : Ay and the diagram

t[B/X]

Ai[B, B] As[B, B]
Al% \[Bu
A [C, B] A5[B, C]
Al[c,\uu /[:a
A[C,C] ——— A5[C, (]



commutes modulec, for everyu such thate : BF u : C.

Otherwise said, the dinaturality diagram needs to be
checked only on one Church-style tetrim order to ensure
the dinaturality ofr.

5.2 Characterisation of dinatural terms

Theorem 3 Letx : Ay Fcy 7 : Ao be a valid Curry-style
sequent. The following propositions are equivalent:

(i) 7isdinaturalin X

(i) for every Church-style terrty, such that erasg,) = 7
andx : A1 F ty : Ag, and for everyD € Types, we
have, fort = NF(ty):

xX Al H t<D/X> : A2

(iii) there exists a Church-style term, such that
erasdty) =7,x: A1 Ftp: Ax and X ¢ Z(tp).

PROOF We first prove (ii}-(iii): asx : A1 Fcu 7 ¢
As, we necessarily have a Church-style tefgrsuch that
erasé€ty) = 7 andz : A; F ty : A2. Then we choose
D € Types such that none of the type variableslinap-
pear inA;, A; ortyg, and we have: : A; F t¢(D/X) : Ay
for t = NF(to). By pulling back from¢(D/X) all the
equalities that go front, to ¢, we obtain a ternt; such
that eras@)) = 7,z : A1 F ¢( : Ay andX ¢ Z(t).

To prove (iii)=(i), considert, satisfying erasg,) = T,
x: Al Fty: Ay andX ¢ Z(to), and taket = NF(¢).
By Theorem 1, as we hav& ¢ Z(t), t is dinatural in
Church-style system F, so for any Church-style tesnthe
two termst"? = AyuB ; t[B/X]; AsBu andt'V =
A1Cu ; t[C/X]; AauC are equal module=r. Thus they
are also equal modulec, and, thanks to Lemma L, is
dinatural in Curry-style system F.

Finally, the proof that (i(ii) will make use of Theo-
rem 2. For this proof, we set = A, andl’ = {z : 4}, so
that we can reuse the namés in a different context.

Considerr dinaturalty such that erage,) = 7 andT" -
to : A, t = NF(tp) andt* = ¢(X*/X). We want to prove
thatl’ + ¢* : A by induction ont*. Thus, we writet* as
in (2):

t*=ay...ap. (2)T1...T,

where eachy; is either of the formkxff 1<j<por
AX; (1 < k < P — p) and we suppose as an induction
hypothesiéthat forl < i <n,TUA  T; : SL(¢*) with
A={x :A,...,z,: A, }.This ensures that
TUAF (2)Th... T : Vr(tY) 3)

2The type A has to be seen as the type expectedtfgras well as
i (t%) is the typed expected fdfF;.

As in the proof of Corollary 1, we considegs = Y,
C =2 —Yandu =M.z, sothatr : B+ u: C. If

= Az 8B.u, then we cannot havef)v =c, v for a term
v, becausd f)v has an extra lambda-abstraction. But we
need to have[f/X]. =cu t[f/X];. So, by comparing the
expressions offr 4 andr_4 in Definition 5 we see that
we must have:

V(A) = X & Vp(t*) = X

As V(A) andVr(¢*) can only differ by occurrences of*
andX, this means tha¥(A) = Vr(¢*).

Together with (3), this implies thal® U A
(2)Th...T, : V(A). By construction of the partial sub-
stitution, theq;’s wear the proper type indication, so that
I'+t* : A, and we are done with the induction.

Thus, the ternt* is well-typed in this case! But then, as
X* does not appear ifi orin A, we havel’ - ¢t*[D/X*] :

A forany D, which meang’ - ¢(D/X) : A. O

From Theorem 3 one can extractalgorithm to check
whether the termr such thate : Ay Fcy 7 : A3 is dinatural.
Indeed, suppose that we have at disposal a tgsuch that
erasé€tyg) = 7 andx : A; - ¢y : As. Then we consider a
type D such thatX ¢ FTV(D), we construct = NF(to)
and we check whether : A; F ¢(D/X) : A, (this is
decidable). If the term is dinatural, then (B> (ii) ensures
thatz : A; F ¢(D/X) : As. Reciprocally, ifx : A; +
t(D/X) : As then (ii)=-(i) ensures that is dinatural.

Now, if we do not have this terny, we can find it by
enumerating all the Church-style terms whose erasure is
until we find one such that : A; F ¢y : As. As we
know thatx : Ay bFcy 7 : Asg, this process will termi-
nate. Thus the dinaturality of a Curry-style terrsuch that
x: Ay Fcy 71 Ay is a decidable question.

Example 1. Consider the Curry-style termr
AzAy.(x)y, such that- 7 : (VWYY - V) - X — X.
The Church-style term; = Az Y=Y \yX . (2){X}y is
such that eragé;) = 7 andt ¢ : (VWY - Y) —
X — X. Now, givenD € Types, we havet; (D/X) =
Ax"VY =Y \yX (2){D}y. So, in general (actually, as soon
asD # X) we have:

Ft(D/X): (VWYY ->Y)-> X > X
Thus,r is not dinatural inX in this typing context.

Example 2. Consider now the same Curry-style term
T AzAy.(z)y, but typed ask T VvYy —
X) —» (VZ.Z) — X. The Church-style ternt,
A"V Y =X V22 (2){X} y{X} is such that erage,)
 and ¢y (VY.Y — X) (VZ.2)
X. For anyD € Types, we havety(D/X)
ApVYY =X \yV2-Z (){D} y{D} so:

Fi(D/X): (VWYY - X)—> (VZ2.2) > X

— —



This means that is dinatural inX in this typing context.

Further directions

[12]

Among the future developments of this work lies a pos- [13]

sible connection between the process of simple expansion
described in this article, and the programming concept of

hooking(see for example [6]).

Another perspective is the analysis of the ideas presented
in [9], where dinaturality is avoided by strongly restnii
the category we are working on. This analysis could be [15]
done either syntactically, in the spirit of the present work
or semantically using game models.
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A Proof of Theorem 1

Theorem 1 Let X be a type variable, and, a term such
thatz : A; F ¢y : As. Considert = NF(¢p), and suppose
that X ¢ Z(t). Then for any terny = \z”. u such that
Ff:B — C,wehave:

Ar[(u, B)/ X to[B/X]; A2[(B,u)/ X] =r t[f/X] (4)
A[(Cu)/ X t0]C/XT; Ao[(u, C)/ X] =r t[f/X] (5)

which means thaf; is dinatural in X.

PrROOF. We first prove Equation (4). For dealing with
the proof, we consider two mutually recursive functions on
normal forms,Fr(t) andGr(t), which are defined on Fig-
ure 2.

To prove (4), it suffices to show the following:

Ay[(u, B)/X]; t[B/X] =F Fr(t)
Fr(t); A2[(B,u)/X] =F &Er(t)

(6)
(7)

with T = {x : ;1\1} (one can work directly with instead of
to, ast =g fo).

To prove the equality (6), we consider a term variable

y not appearing irt, we sett? = t[B/X][y/z] and we
note thatA;[(u, B)/X] ; t[B/X] tB[(A1fB)x/y).
Then we proceed by inductidnon A; to show that
tP[(Arf B)z/y] =F Fr(t):

e If A; contains no arrow thed, f B = id 4,5, x) and the
result is immediate.

o If Ay =V.(V2. A] — ... — A; — X) — Z where
eachv; is a sequence of quantifievs(| ... VX}, andZ is
a type variable, then

A1 fB=V1.(V2. A\ fB — ... — A;)fB — f)— Z[B/X]

The variablez being of typeA,[C, B], we can write, by
n-expanding it:

D 1 A7 A, 2
z=p AAz7 ()X (Ao Axy ' Az, " (2) Xy L)

with D = V5. 4] — ...—>A; — X, \; :AXf...AX}Qi
andX' = {X{}...{X},}. Thus:

(A1 fB)z =p AiAzPB/X) ()X (A Azi .. Aap .

(NE)X*(ALfB)z: ... (A, fB)xy)

3We take steps in this induction to make the ideas more obyiouis
the general case is in fact given by the fourth case of thectimu
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We can then write, fof = t2[(A; fB)x/y):

t=p tB[AlAzD[B/Xl.(x)xl(AQ.Az{‘Ai , Ax;‘A
(N)()X*(ALfB)z1 ... (A, fB)ay) /Y]

F = tBAALIB/X) ()X (Ap Azt . Aai.
(N @)1 - yp) YA f B)zi/yili

wherey, ..., y, are chosen fresh itf.
This gives us an inductive construction that is exactly
equivalent to the definition of - (¢) with T' = {2 : A, }. In-
deed, when constructingr (¢), any time we see in ¢t ap-
plied to an argumerit, we replace this argument oy (7'):
this corresponds to the application ffin the above for-

mula; and then, all the variables that are bound in the head

of T" are added to the contekt so we will treat them like
x: this corresponds to the substitutifd, f B)z;/y;]; in
the above formula.

[ ] |f A1 == v1(v2A/1 — ...
Y # X, then

— A, = Y) — Z with

A1 fB=VY.(V2. A fB— ... — A;fB —Y)— Z[B/X]

Again we rewriter as

/

x=p Al)\zj(l’)Xl (AQ.)\mf/l . )\J;?p.(z)szl C Tp)

so that:

(AyfB)z =p AiAzPB/) ()X (Ag Azt .. Aap .
() X2(ALfB)ar .. (A, B)ay)

and finally, fort = tB[(A; fB)x/y):

Ap

F=p tB[A NP ()X (Ap el ).
(2)X2y1 .. yp) [YI[(ALf B)ai [yl

whereys, . .., y, are chosen fresh itf.

Again, this is equivalent to the definition &f-(¢) with
=A{z: AAl}: any time we see: in t applied to an argu-
mentT, we replace this argument Ig§-(7") (but this time
we do not applyf becausé’r(T') # X), and all the vari-
ables that are bound in the headloare added to the con-
textT", so we will treat them liker.

o If Ay =V1.Dy — ... — Dy — Z where eaclD; has
the formD; = V;11.A] — ... — A} — Y}, then we can

write
o \Dr A, A
z=pAizt AR ()X (Mg ey L AT )
(21) X2 Vo (App it o
1 1,1---Tl,py)--- k+1- zk,l"' zk,pk

(Zk)XkJrl:L'kJ .. -zk,pk)



Considert defined as in (1):
t:oq...ap. (Z)TlTn

where eachy; is either of the formXxff 1<ji<porAX; 1 <k<P-—p).

Then we set:
5 [@F@).F(@) HegT
i) =erap {(z) Gr(Ty)...Gr(T,) ifz€T
(2) Froa(Th) ... Froa(T,)  ifz¢ TandVp(t) £ X
Gr(t) = ai...ap (2) Grua(Ty) ... Grua(Th) if zc TandVr(t) # X
P Z O OP Y (1) (2) Froa(Th) ... Froa(Ta) if = ¢ T andVr(t) = X
(f) (z) Groa(Ty) ... Groa(Tyn) if zeTandVr(t) = X

where

= AX; if a; = AXg, anda; = )\m if ;= )\x

o Oé = AXy if a; = AXy, anda — zj‘j[B/X] if

A,
o = )\:L'j]

o A={z1:A,...,xp: Ay}
e Fe({D}) = Gr({D}) = {D} i D < Types

(2) Gp(T1) ... G1(Th) if 2 € T andVp(t) #
(f) (2) Gr(Ty) ... GR(T,) if 2 € TandVp(t) =
- Froa(Th) ifz¢ T

- Grua(Tn) if 2 € T andVp(t) #
z) gFUA(Tl) Ghua(Ty) if z €T andVp(t) =

(2) FR(Th) ... FL(Th) if 2¢ T
o7 OCIC) X
X
X
X
where
= AX; if a; = AXg, anda; = )\ac if oy = )\x

o af = AX; if a; = AXy, andaf’ = Az /]

if o = )\z;‘j
o A={z1:A,...,xp: Ay}
e Fr({D}) =6r({D}) = {D}if D € Types

Figure 2. Constructions used in the proof of Theorem 1
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so that so that

(AfB)z =p A ADIB/XT |\ DRIB/XT (yxct (A2Bf)h =p A=l A2 (0) ()X (A Ay P/
al Al AL[B/X] 2/ 41 1
(Az Azl Xalr (01)(21) X2 (AL B)a, A (2) X (AL Bz - (A, BS)
— — AF[B/X] Ay, [B/X]
(AL fB)z1,,) . (AHI.Axﬁ...Ax;:Z;’;. T1py) oo (Mg Az e

(vr) (z) XM (AT FB) w1 - . (Af, f B)k ) (1) X (AT B )y - (A, Bf )k p,)

withv = fif Z = X andv = idz otherwise. Now let us

with v; = fif Y; = X andv; = idy, otherwise. Finally,  {gkep — Fr(t); we can rewrite it as

we obtain, fort = t2[(A, fB)z/y):
Fr(t) =p AYy .. AV, My BT\ PHBIX

[ p tBAPUB/X] O\ DRBX] (XU (A, A
F [ZL “k ()X (A2 Az} for some F = (2)1y...T,. If we note F/ =
1

)\$1147;1.(Ul)(21)x2y171 N yl-,pl) N (Ak+1>\$?}; F[Xll/yl] e [X11\/1/YN1]’ we get' fori: = (AQBf)]:F(t)

Ak o = =~ 1
. .)\J;k;’; .(Uk)(zk)Xk"’lyk’l e Yk ) /Y] t :FAl)\zf)l . )\z]?".(v) F’[Ag.)\mf,ll[B/X] .
( Y P AllB/X
(A5 B)wi,;j/Yili )\xL;E / ].(zl)XzyLl c Y JY) e [Ag
k
Wherg a.II theyz-:j’s areT chosen fresh. o . )\x;:]l;[B/X] . )\xz’;’;[B/X} .(zk)Xk“ym .
This |s/§ga|.n equalent to the dgfmmon B (t) with e /8] (A B)zis /y: )i 5
I' ={x: A;}: in particular wherll" is an argument of,
we applyf in T exactly in the case wheié-(T') = X. where they; ;'s are again chosen fresh.
The result of this construction is exactly the tefg(t):
e Every other form for the typel, can be related to indeed, thevariables, ...y, andy; ; in F’ are the places,
the previous case by applying the isomorphigth A — in the definition of 7r-(¢), where we have usefir and not

B ~ A — VY.B (with Y ¢ FTV(A)). The result for  g.. Hence, with the application of at those places, we
tB[(A1 fB)z/y] is then similar to the one given above (only  retrieve&r (t).
the positions of theA's and theX’s change), and can be

shown to be equal & (). e Every other form for the typel, is isomorphic to the

above form, and the result remains true in these cases (we
just have to move the positions of thés and theX's in the
For Equation (7) we note thafr(¢) ; As[(B,u)/X] = formulas).

(A2Bf)Fr(t) and we use again an induction, this time on

Ag: Thus we have proved the equality (4). The proof of (5)
is very similar to what we have done above, with two new

o If Ay = X then(A2Bf)Fr(t) = (f)Fr(t). Andthein-  functionsF,(t) andGj(t) defined on Figure 2.

ductive construction ofr-(t) only calls the functiorgr(¢) The equalities to prove are in this case:

in this case, so we havg)Fr(t) = Er(¢).

 Ap = ¥ with ¥ % X then(AaBf)Fe(®) = Fol® A[(Cu)/X]; t[C/X] =F Fr() (8)
° o =Y wi en(As r{t) = Jrt). () A X] = 9
And the inductive construction of(¢) only calls the func- Frt); Aol C)/X] =r &0 () ©
tion Gr(¢) in this case, so we haver(t) = &r(t). With T = {z : 4}, O

o If Ay =V1.Dy — ... = Dy — Z where eaclD; has
the formD; = V;41.4] — ... — A} — Y}, then for any B Proof of Theorem 2
termh of type A;[B/X] we can write
Theorem 2 Let X be a type variable, and, a term such

- D1[B/X] Dy[B/X] 1 AlB/X] thatz : A; ¢y : As. If we notet = NF(ty), then for any
h=phirz re A ()X (A A term f = A\z®. usuchthat- f: B — C, we have:

Al[B/X] 2
g IRt W )X B X Al (B /X) = 17/ X0 (10
e PP e P )X ) AS(Cou) /Xt CYX; Asl(u, ©)/X] = tf/X) (A1)
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Considert* defined as in (2):
t"=a1...ap. (2)T1...T,

where eacla; is either of the form\xff I<j<porAX; (1 <k<P-—p).

Then we set:

o B B JE@Mrs(Th).. Mps, (T,) fz¢T
Mpa(t*)=ay ...ap. {(Z)NF,&(Tl)...Nmn(Tn) ifzel

(2) Nioas, (T1) .. Nroas, (Th) it - ¢ T andV(4) £ X

Neat) = ar...ap. (2) Nroas, (Th) .. . Nroa s, (Th) if zeTandV(A4) # X
: (f) (2) Mroas, (T1) ... Mroas, (T) if 2 ¢ T andV(4) = X
(f) () Nroas, (Th) .. .Nroas, (T,)  ifzeTandV(A4) = X

where
o a; = AX; if a; = AXy, anda; = Az}’ with D; = A;((C, B)/X|[B/X*] if a; = Az’
o af = AX;if a; = AXy, andaf = A}’ with B; = A;[B/X|[B/X*] if a; = Az’
o forl1 <i<n,¥; =3L(t").

A={xy:AL,... 2 Ay}

Mr.a({D}) = Nr.a({D}) = {D[B/ X"} if D € Types

() Mp s, (Th) .. . Mp s (Tn)  ifz¢D
pat)=0af .. ab. ¢ (2) Moy, (T1) .. NFE( if z e TandVp(t*) # X
(f) (2) =X

n)
Mos, (Th) ... Ni s (T,) if z €T andVr(t*)
(

(2) M TUA,S, (Ty) .. MFUA Sh T,) ifz¢ T
f,A(t*): 1...0p. (Z)Nquzl(Tl) FUAE (Tn if z€ T andVp(t*) #
) =

) X
(f) (2) FuA,zl(Tl) NFUAE (T) ifzelandVr(t*) = X

where
o ;= AX; if a; = AXy, anda; = Az} with D; = A;((C, B)/X][C/X*] if a; = Az
o af = AX; if a; = AXy, andal = Ao} with E; = A;[C/X][C/ X if a; = Aa
o forl <i<n,%; =XL(t*).
o A={u:Ay,... 1 A}
r.a({D}) = Np 4 ({D}) = {D[C/X*]}if D € Types

Figure 3. Constructions used in the proof of Theorem 2
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PROOF Let us first consider Equation (10), and set x in ¢t applied to a list of arguments; . .
t* = t(X*/X). As in the proof of Theorem 1, we consider each argumenI; by N 4(

two mutually recursive functions\ir 4 (t*) andAr (%),
the difference being that we work witti (which is is not

necessarily well-typed), and that there is a new parameterformula. Then, all the variables that are bound in the head
A € Types U {{}. These functions are defined on Fig-

ure 3.
The two equalities we have to prove are:

Ai[(uw, B)/X]; t[B/X] =p Mr a(t")
Mr a(t*); Az[(B,u)/X] =F Jr a(t)

(12)
(13)

withT = {z : A;} andA = A, (again we work witht
instead ofy becausé =p tg).

We start by proving (12): considering a term variaple
not appearing irt and setting® = ¢[B/X][y/z], we note
thatA;[(u, B)/X] ; t = t?[(A1fB)z/y] and we proceed
by induction onA;:

o If Ay =V1.Dy — ... = Dy — Z where eaclD; has
the formD; =V;1.A] — ... — A} —Y; (where each
v, is a sequence of quantifiers), then we can write

a1

2 =pA AP APE ()X (Mg el L Ay
2 A}
(Zl)X £E1_1...£E1_p1> (Ak+1.>\l'k71...
)\:L'k pk (Zk)X]H_l Ti1--- xk.,p;)
where, as beforeA; = AX{...AX} and X' =

(Xi}...

(A1 fB)x =p ANz

{X},}. Thus

Az H B ()X (Ag.
)\xﬁl (1) (z1)X
(Azl)lfB):El_,pl) e (Ak+1.)\x§fl e
(i) (z) XM (A B gy .. (Af, fB) 2k p,)

with v; = fif Y; = X andv; = idy, otherwise. Finally,
we obtain, fort = tB[(A; fB)x/y):

2(14%‘]03)1'171 .

Al
)\zl_rl ...

E=ptB DB G PHBIN ()X (Mg A

Al

ATy 3, -(vl)(21)X2y1,1 e Ylpy) -

(o) (1) X g1
(A% fB)wij /i sl

where they; ;'s are chose fresh.

Apry Azt
(Akt1- Lpa

M’k - Ykpi) /Y]

. Ty, we replace
T;): that is, we apply(f) to

this argument ifV(D;) = X, otherwise we do nothing;
this corresponds exactly to the applicationyofi the above

of T are added to the contekt so we will treat them like
x: this corresponds to the substitutiQ; f B)z;/y;]; in
the above formula.

e Every other form for the typel, is isomorphic to the

above form, and the result remains true in these cases (we

just have to move the positions of thés and theX's in the
formulas).

For the equality (13) we note that
Mroa(t) 5 Al(B,u)/X] = (A:Bf)Fr(t) and we
proceed by induction oAs:

o If Ay =V,.Dy — ... — Dy — Z where eaclD; has
the formD; =V, 1.A] — ... — Aj_— Y}, then for any
termh of type A;[B/X] we can write

h ZFA1)\ZD1[B/X] ..)\z,?’“[B/X].(h) XAy )\mA 1[B/X]
AT fp[lB/X] (20)X%21 1. @1 p,) oo (Aggr
)\xﬁllz[B/X] --sziz[B/X].(Zk)Xlem )
so that
(A2Bf)h =p A1)\Zﬁ1 )\zlj?\’“.( )(h) XY (Ao A\ A [B/X]
Az 1p[lB/x] (2 1)X2(Ale)m1,1...(Azl)le)
Tipy) - (ApgrAzy )y AB/XT )\xﬁi’;w/x]
(Zk)X’““(A’fo)xk,l (A Bf)a )

withv = fif Z = X andv = idz otherwise. Now let us
takeh = Mr 4(t); we can rewrite it as

MP,A(t) =r AY1...AYpN, )\yDl[B/X] )\yl?k[B/X] M
for some M = (2)T1...T,. If we note
M = M[X!/vi]...[X}\, /YN,], we obtain, for
t= (AQBf)MnA(t)Z
vaZFAl)\ZE)\1 )\z,?\’“.( ) M'[Ag. Ay [B/X] .
Ay1B/X]
ALy (z 1)X2y1,1---y1,p1/y1] oo [ Ak
Ak
AP )X

Yrow /RN (A B2 5/ yi )i

This gives us an inductive construction that is exactly The result of this construction is exactly the teff 4 (t):

equivalent to the definition oM 4(t) withT = {z : A, 1.
Indeed, when constructinr 4 (t*), any time we see or
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indeed, the variableg;, ...,y andy;; in M’ are the
places, in the definition oM 4(¢), where we have used



Mr 4 and notNT 4. Hence, with the application af at
those places, we retrievé 4 (t).

e Every other form for the typel, is isomorphic to the
above form, and the result remains true in these cases (we
just have to move the positions of thés and theX's in the
formulas).

It might be surprising to see the similarity between these
two inductions and the proof of Theorem 1, whereas the
present case is supposed to be more complicated. The rea-
son for this is that, with the partial substitutiofX*/X),
we transformed every instantiation By into an instantia-
tion by X*, so that we got rid of the instantiations &.
Thus, after this substitution, things are very similar te th
case whereX ¢ Z(¢).

The proof of Equation (11) is very similar to what we
have just done, with two new functiony. ,(t*) and

L 4(t*) defined on Figure 3.

The two equalities we have to prove are in this case:

Ai[(Cou)/XT; t{C/X] = My A1) (14)
r.a(t*); Al(u,C)/X] =F Kr a(t") (15)

withT = {z: A;} andA = As. O
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