
Dinatural terms in system F

Joachim de Lataillade
Institut de Mathématiques de Luminy

Campus de Luminy, Case 907
13288 MARSEILLE Cedex 9

delatail@iml.univ-mrs.fr

Abstract

We provide in this article two characterisation results,
describing exactly which terms verify the dinaturality dia-
gram, in Church-style system F and in Curry-style system F.

The proof techniques we use here are purely syntactic,
giving in particular a direct construction of the two terms
generated by the dinaturality diagram. But the origin of
these techniques lies in fact directly on the analysis of sys-
tem F through game semantics.

Thus, this article provides an example of backward engi-
neering, where powerful syntactic results can be extracted
from a semantic analysis.

1 Introduction

Dinaturality. In this article we solve an open problem
raised in [10]: the analysis of dinaturality for second-order
lambda-calculus.

Dinaturality is a categorical notion that has appeared in
logic since [2]. The idea behind this is to consider a type
A with a free variablesX as a functor, which associates to
each typeB the typeA[B/X]. This raises a problem when
we apply the functor to a morphism: indeed, if we consider
for exampleA = X → X , it is well-known that the first
occurrence ofX has to be contravariant, whereas the second
one is covariant. Thus, the functors we need have the form

F : Cop × C → C

whereC is the category to be considered (in this articleC

will be a syntactic category).
What is then the good notion of morphism between two

such functorsF, G : Cop × C → C ? A reasonable answer
to this question is the notion ofdinatural transformation
(see [15]) that extends the natural transformations to this
new kind of functors. A dinatural transformationθ between
F andG, denotedθ : F→̈G, is a collection of morphisms

θA : FAA → GAA, for A object inC, such that the fol-
lowing diagram commutes:

F [B, B]
θB

// G[B, B]
G[B,u]

&&MM
MM

MM
M

F [C, B]

F [u,B] 88qqqqqqq

F [C,u] &&MM
MM

MM
M

G[B, C]

F [C, C]
θC

// G[C, C]
G[u,C]

88qqqqqqq

for every morphismu : B → C in C.
Unfortunately, dinatural transformations do not compose

in general, so we cannot build a category with this structure.
However, there are some special cases where composition
works properly: it was the case in [10] and [5], and again in
this article we will not get any trouble regarding composi-
tion.

Appearances of dinaturality in computer science in-
clude in particular the formalisation of parametric poly-
morphism (see below) and the theory of traced monoidal
categories [13], notably their relations with fixpoint opera-
tors [11].

Characterisation of dinatural terms. Rather than com-
position, the problem we are interested in is to check
whether, in a given syntactic category, every termt actu-
ally defines a dinatural transformation, when considering
the family (t[A/X])A (whereA describes the set of all
types).

It was shown in [10] that this is true for simply-typed
lambda-calculus. This means that every term in this cal-
culus satisfies a general and non-trivial property, stated by
the dinaturality diagram. This is the origin of the famous
theorems for freeof Wadler [26].

But the authors of [10] insisted that they did not solve the
problem in the more general case where there is a second-
order quantification in the grammar of types. The corre-
sponding calculus, called system F, was discovered by Gi-

rard [8] and Reynolds [22]. There are two main presenta-
tions of system F, that we will both study in this article:
Church-style system F, where types appear explicitly in the
terms, and Curry-style system F where, on the contrary, the
terms contain no type indications, and the language of terms
is the pure lambda-calculus. In this article, Church-stylese-
quents are notedΓ ⊢ t : A, whereas Curry-style sequent are
notedΓ ⊢Cu τ : A.

It is in fact easy to realise that the dinaturality property is
not satisfied any more with system F: as we shall see (and as
can be seen directly by checking the diagram), in Church-
style system F the termt = λx∀Y.(Y →Y)λyX .(x){X}y is
not dinatural inX ; that is, the family(t[A/X])A is not a di-
natural transformation. For Curry-style system F, the ques-
tion is more tricky, but again the dinaturality will not be true
in general.

In the present article we provide twocharacterisation
results: the first is for Church-style system F, for which
we show that a termt is dinatural inX if its normal form
contains no type instantiation whereX appears as a free
variable. The second result is for Curry-style system F: we
show that a termτ such thatΓ ⊢Cu τ : A is dinatural in
X if and only if there exists a Church-style termt, equal
to τ modulo type erasure and such thatΓ ⊢ t : A, which
contains no type instantiation whereX appears as a free
variable. Both characterisations are decidable.

Proof techniques. To prove these results, we use purely
syntactic techniques. For the Church-style case, we give a
construction that we callsimple expansion, defined only on
a certain subset of terms, and we prove that, for these terms,
the two terms produced by the dinaturality diagram happen
to be both equal to the result of the simple expansion; thus,
these terms are dinatural. For the other terms, a very simple
argument shows that they are not dinatural.

Curry-style system F is defined here as the Church-style
system F modulo type erasure. And to deal with dinatural-
ity in this system, we will need to completely describe the
result of the dinaturality diagram for Church-style terms.
Hence, we introduce anupper expansionand alower ex-
pansion, and we prove that they correspond respectively
to the upper term (or morphism) and the lower term in the
dinaturality diagram. From this we extract a proof of char-
acterisation of dinatural Curry-style terms.

Thus, the article will not only give us these two charac-
terisation results, but also provide a complete description of
the terms given by the dinaturality diagram.

But if the techniques used in this article are purely syn-
tactic, their origin lie in fact on a semantic ground: namely,
on game semantics. Indeed, in games, the above expan-
sions are related to a process that is already well-known by
those interested in games for system F: thecopycat expan-
sion, appeared implicitly in [12] and more explicitly in [19]

and [4]. It was proved in [3] that by carefully generalis-
ing the copycat expansion process, one can exactly describe
the dinaturality diagram in game semantics; in fact, one ob-
tains the processes corresponding in games to the upper and
lower expansions described in this article (and simple ex-
pansion is just a special case of these two expansions).

Thus, what we do in this article can be considered as a
form of backward engineering: from a notion already un-
derstood in game semantics, we extract a purely syntactic
approach of the problem, that we use to prove our charac-
terisation results. Note that the characterisations mightbe
proved directly in game semantics, using full completeness
results. But for the sake of simplicity, it is easier to use a
syntactic translation of the game mechanisms.

A similar approach was taken in [14], where a purely
syntactic study of exceptions and continuations was pro-
posed, arising from a game semantics analysis. Other, more
direct applications of game semantics for dealing with syn-
tactic problems concern model-checking [20] and type iso-
morphisms [16, 4].

Connections with parametricity. One interesting feature
of dinaturality, already noted in [2], is its connections with
parametric polymorphism.

In a polymorphic language (or in a model of polymor-
phism), a functionf of type∀X.A is calledparametric if
its behaviour does not depend, intuitively, on the value of
the argument given forX . This notion was introduced by
Strachey [25], and analysed by Reynolds with his notion
of relational parametricity [23]. Relational parametricity
was first a semantic idea, but it was later translated syn-
tactically [1, 21] trough a language refining Church-style
system F.

Dinaturality was proposed in [2] as an alternative cri-
terion for parametricity, and the property was analysed in
Reynolds’ PER model. Then in [21] it was shown that rela-
tional parametricity implies dinaturality at a syntactic level.
Starting from the fact that Church-style system F itself does
not satisfy the dinaturality property, it was argued in [3] that
another condition, restricting dinaturality to simple types
(i.e. types without second-order quantification), was a more
sensible criterion for parametricity.

However, as explained in [3], this last criterion is still a
bit too strong for some languages or models that should be
considered as parametric. Thus, the present work might be
useful in the tedious quest for a perfect parametricity crite-
rion.

2 Church-style system F

In this article we will focus mainly on Church-style sys-
tem F, the variant of system F where explicit types appear in

2

the terms. In fact, even Curry-style system F will be studied
through an analysis of the Church-style case.

The grammar and rules of this system are shown on Fig-
ure 1, whereFTV(Γ) is the set of free type variables in
all types appearing inΓ, FTV(t) the set of all free type
variables in all types appearing int and FV(t) the set of
all free term variables int. For example, for the term
t = ΛY λxX→Y .(z){Z → Y } we haveFTV(t) = {X, Z}
and FV(t) = {z}. The equality in this system, denoted
=F , is the congruence relation resulting from the equalities
given at the end of Figure 1.

The set of all second-order types is calledTypes. Note
that we do not consider the product typeA×B in the gram-
mar of system F: this is only for the sake of simplicity, to
avoid making our proofs more technical. In fact we could
do all the proofs of the article, and obtain the same results,
in a case where we have a product type. As this construc-
tion is not an essential part of system F, we chose to ignore
it here. Finally, for a first reading it may be useful to forget
about the type indications in the lambda-abstractionsλxA:
ignoring them will make many further constructions much
simpler.

We introduce two specific notations on system F that will
be of great use throughout the article:

• introducing a new atomic type⊥ (which will be used
only in this definition), we callV(A) the type vari-
able appearing on top of the typeA if this variable is
free, V(A) = ⊥ otherwise; this means, inductively:
V(X) = X , V(⊥) = ⊥, V(B → A) = V(A) and
V(∀X.A) = V(A[⊥/X])

• given a termt, we noteZ(t) the set of all free type
variables in all type instantiations{D} appearing in
t. Note thatZ(t) ⊆ FTV(t) but they are not equal
in general: indeed,X might appear int as a lambda-
abstraction even ifX /∈ Z(t). For example, ift =
λxX .λy∀Y.Y .(y){Z}, thenFTV(t) = {X, Z}whereas
Z(t) = {Z}.

2.1 Normal forms of system F

Throughout the article, we will consider thenormal
forms of the Church-style system F; by this, we meanη-
long,β-normal forms:

• a β-normal form is a termt that contains no redex of
the form(λxA.u)v or (ΛX.u){B}

• an η-long β-normal form is aβ-normal formt with
Γ ⊢ t : A such that, if we apply anη-expansion
u 7→ λxB .(u)x or anη2-expansionu 7→ ΛX.(u){X}
anywhere insidet, then for the resulting termt′, we
have eitherΓ 0 t′ : A or t′ is notβ-normal.

It is well-known since [8] that any Church-style termt0
such thatΓ ⊢ t0 : A has a unique normal formt = NF(t0),
which can be written

t = α1 . . . αP . (z) T1 . . . Tn (1)

where:
• eachαi is either of the formλx

Aj

j (1 ≤ j ≤ p) or ΛXk

(1 ≤ k ≤ P − p)
• there existsB ∈ Types such thatz : B ∈ Γ ∪ {x1 :

A1, . . . , xp : Ap}
• if Γ, x1 : A1, . . . , xp : Ap ⊢ (z) T1 . . . Ti : ∀Y.B0 and

i < n thenTi+1 is of the form{D} with D ∈ Types
• if Γ, x1 : A1, . . . , xp : Ap ⊢ (z) T1 . . . Ti : B1 → B2

andi < n thenTi+1 is a Church-style term in normal
form such thatΓ, x1 : A1, . . . , xp : Ap ⊢ Ti+1 : B1

• if Γ, x1 : A1, . . . , xp : Ap ⊢ (z) T1 . . . Tn : B0 then
B0 is a type variable.

We will define all our operations on Church-style terms
inductively, using this presentation of normal forms. We
introduce a few more notations: given a normal formt as
in (1), we setVΓ(t) = Z if Γ, x1 : A1, . . . , xp : Ap ⊢ z : D
andV(D) = Z, and we notez ∈ Γ if there existsB ∈
Types such thatz : B ∈ Γ.

2.2 Syntactic dinaturality

In this article we are concerned with dinaturality at the
level of the syntax - only Church-style system F for the mo-
ment. In this case, the category of interest, called thesyn-
tactic category, is denotedT and defined as follows (for a
given term variablex):

• the objects are second-order types

• a morphism fromA to B is an equivalence class, mod-
ulo =F , of termst such thatx : A ⊢ t : B

• composition is given by substitution: ifx : A ⊢ t : B
andx : B ⊢ u : C thenx : A ⊢ u[t/x] : C, so
composing the class ofu with the class oft gives the
class ofu[t/x], denotedt ; u

• the identity is the class of the termx.

In this category, given a type variableX , one can asso-
ciate to every typeA a functorA[(_, _)/X] : T op×T → T .

This functor is constructed as follows. For two types
B andC, A[(B, C)/X] (or A[B, C] for short) is obtained
from A by replacing every positive occurrence ofX by C
and every negative occurrence ofX by B. Inductively, this
means:

• X [B, C] = C andY [B, C] = Y if Y 6= X

• (A1 → A2)[B, C] = A1[C, B] → A2[B, C]

3

Grammars:

A ::= X | A → A | ∀X.A
t ::= x | λxA.t | (t)t | ΛX.t | (t){A}

Typing rules:

(ax)
x1 : A1, . . . , xn : An ⊢ xi : Ai

Γ, x : A ⊢ t : B
(→ I)

Γ ⊢ λxA.t : A → B

Γ ⊢ t : A → B Γ ⊢ u : A (→ E)
Γ ⊢ (t)u : B

Γ ⊢ t : A (∀I)
Γ ⊢ ΛX.t : ∀X.A

if X /∈ FTV(Γ)

Γ ⊢ t : ∀X.A (∀E)
Γ ⊢ (t){B} : A[B/X]

Equalities:

(λxA.t)u =β t[u/x]
λxA.(t)x =η t if x /∈ FV(t)

(ΛX.t){B} =β2 t[B/X]
ΛX.(t){X} =η2 t if X /∈ FTV(t)

Figure 1. Church-style system F

• (∀Y.A0)[B, C] = ∀Y.A0[B, C] with Y 6= X .

For two termsu, v with x : A1 ⊢ u : B1 andx : A2 ⊢ v :
B2, we first definef → g for f = λxA1 .u andg = λxA2 .v
as:

f → g = λxB1→A2λyA1 .(g)(x)(f)y

so that:⊢ f → g : (B1 → A2) → (A1 → B2). Then we
can define more generallyA[(f, g)/X] (orA[f, g] for short)
as follows:

• X [f, g] = g and Y [f, g] = idY if Y 6= X (with
idY = λxY .x)

• (A1 → A2)[f, g] = A1[g, f] → A2[f, g]

• (∀Y.A0)[f, g] = λx∀Y.A0[B1,A2].ΛY.(A0[f, g])(x){Y }
with Y 6= X .

Finally, we setA[(u, v)/X] = (A[(f, g)/X])x, so that

x : A[(B1, A2)/X] ⊢ A[(u, v)/X] : A[(A1, B2)/X]

Thus we obtain two different definitions forA[(_, _)/X],
but depending on the context it will be clear in what follows

whether we useA[(f, g)/X] or A[(u, v)/X]. One can also
write A[(f, B)/X] or A[(B, f)/X] (resp.A[(u, B)/X] or
A[(B, u)/X]): it is just a shorthand forA[(f, idB)/X] or
A[(idB, f)/X] (resp.A[(u, x)/X] or A[(x, u)/X]).

As the variableX will always be fixed in what follows,
we sometimes use the notationA[γ, δ], or evenAγδ, for
A[(γ, δ)/X] (whateverγ andδ might be).

Now it makes sense to talk about dinaturality in this cat-
egory:

Definition 1 (dinatural term, Church-style) A term t
such thatx : A1 ⊢ t : A2 is dinatural in X if the family
(t[A/X])A∈Types is a dinatural transformation; that is, if
the diagram

A1[B, B]
t[B/X]

// A2[B, B]
A2[B,u]

''NNNNNNN

A1[C, B]

A1[u,B] 77ppppppp

A1[C,u] ''NNNNNNN
A2[B, C]

A1[C, C]
t[C/X]

// A2[C, C]
A2[u,C]

77ppppppp

4

commutes, modulo=F , for everyu such thatx : B ⊢ u : C.

In what follows, when the typesB andC are considered
as fixed we note

A = A[(B, C)/X] Â = A[(C, B)/X]

3 Dinatural terms for Church-style system F

Definition 2 (simple expansion)Let us consider a type
variableX and a normal formt such thatΓ ⊢ t : A and
X /∈ Z(t). Consider also a termf such that⊢ f : B → C.

Then we define thesimple expansion of t alongf onX
as the term

t[f/X] = EΓ(t)

whereEΓ(t) is defined, fort written as in (1), by:

EΓ(t) = α̂1 . . . α̂P .

{
(f) (z) U1 . . . Un if VΓ(t) = X

(z) U1 . . . Un otherwise

with Ui = EΓ∪∆(Ti) and:

• α̂i = ΛXk if αi = ΛXk, andα̂i = λx
cAj

j if αi = λx
Aj

j

• ∆ = {x1 : A1, . . . , xp : Ap}

• EΓ({D}) = {D} if D ∈ Types.

Intuition. Informally, the construction of the simple ex-
pansion can be described as follows:

• we replace each subtermT in t of typeX by (f) T

• we replace each occurrence ofλx
Aj

j by λx
cAj

j .

Example. The termt = λxX→XλyX .(x)y is in normal
form and such thatX /∈ Z(t). Its simple expansion alongf
onX is then

t[f/X] = λxC→BλyB.(f)(x)(f)y

With the hypotheses of the definition, the simple expan-
sion verifies:

Γ[(C, B)/X] ⊢ t[f/X] : A[(B, C)/X]

In fact, this term is exactly the term resulting from the di-
naturality diagram. Indeed:

Theorem 1 Let X be a type variable, andt0 a term such
thatx : A1 ⊢ t0 : A2. Considert = NF(t0), and suppose
that X /∈ Z(t). Then for any termf = λxB . u such that
⊢ f : B → C, we have:

A1[(u, B)/X] ; t0[B/X] ; A2[(B, u)/X] =F t[f/X]

A1[(C, u)/X] ; t0[C/X]; A2[(u, C)/X] =F t[f/X]

which implies thatt0 is dinatural inX .

The proof of this theorem is given in Appendix A.

Corollary 1 In the Church-style system F, a termt0 is di-
natural inX if and only ifX /∈ Z(NF(t0)).

PROOF: Theorem 1 tells us thatX /∈ Z(NF(t0)) is suffi-
cient fort0 to be dinatural. To prove that it is also necessary,
consider a normal formt with x : A1 ⊢ t : A2 such that, for
someD ∈ Types, {D} appears int andX ∈ FTV(D). It
is easy to see that in this case, the dinaturality diagram will
not commute for everyu, because{D[B/X]} appears in
t[B/X] whereas{D[C/X]} appears int[C/X] at the same
place.

To be more precise, considerB = Y and C =
Z → Y , where Z /∈ FTV(t), and setu = λyZ .x,
so that x : B ⊢ u : C. The precompositions by
A1[(u, B)/X] or A1[(C, u)/X] and the postcompositions
by A2[(B, u)/X] or A2[(u, C)/X] will not give rise to any
β2-redex(ΛY.t){D}, so at the end if we note

tup = A1[(u, B)/X] ; t[B/X] ; A2[(B, u)/X]

tlow = A1[(C, u)/X] ; t[C/X] ; A2[(u, C)/X]

we getZ /∈ Z(NF(tup)) andZ ∈ Z(NF(tlow)), so tup and
tlow are not equal modulo=F in this case. Hence,t is not
dinatural. �

Note that the result in [5] for simply-typed lambda-
calculus was apparently slightly more general than our re-
sult for system F: it stated that, inanycartesian closed cate-
gory, all the definable morphisms (i.e. those corresponding
to simply-typed lambda-terms) are dinatural. Actually, in
the proof of Theorem 1 we do not use any induction on the
term u, so we can state a similar result here: in any hy-
perdoctrine1, the only definable morphisms (i.e. those cor-
responding to system F terms) that are dinatural are those
coming from a termt0 such thatX /∈ Z(NF(t0)). The
proof would consist in replacing every appearance of this
syntacticu by a composition with a morphismu.

We shall not insist on this point, but simply remark that
we did not really lose any generality by working directly in
the syntactic category.

4 General description of the dinaturality di-
agram

In the above proof of characterisation of dinatural terms,
we only dealt with the dinaturality diagram for a termt0
in the case whereX /∈ Z(NF(t0)). This lazy approach is
enough to do the proof, but a bit unsatisfactory, as we do
not describe all the possible differences between the two
morphisms of the diagram.

1A hyperdoctrine provides a model of Church-style system F,
see [17, 24].

5

This gap is filled in the present section: staying with
Church-style system F, we describe the dinaturality diagram
in all cases. Thus we give two different constructions on
normal forms,t[u/X]u andt[u/X]l, which correspond to
the two morphisms of the diagram, and which coincide only
whenX /∈ Z(t).

The interest of this is not only to give a full description
of the diagram, but also to allow to derive the characterisa-
tion of dinatural terms in Curry-style system F: in this case,
there is no trivial argument similar to what we used for the
reciprocal of Theorem 1, so we do need this complete study
of the dinaturality diagram. The characterisation of dinatu-
ral terms in Curry-style system F will be given in section 5.

4.1 Partial substitution

Our first task is to distinguish, within a given termt in
normal form such thatΓ ⊢ t : A, between occurrences
of the variableX that come fromΓ andA, and those that
appear because of the type instantiations int.

This will be done by first enriching our grammar of types
by a new type variableX∗, that we see as a distinct copy of
X (alternatively we can just choose an already existing type
variableX∗ that does not appear int, in Γ and inA, nor in
B andC, and such thatX∗ 6= X).

Then we want to substituteX by X∗ in t, but only when
X is used during an instantiation: in particular, the substitu-
tion does not occur for a lambda-abstraction likeλxX when
the X corresponds to an occurrence of type variable inΓ
or in A. Thus we need a notion ofpartial substitution ,
that can be stated in general ast〈D/X〉 with D ∈ Types.
The term resulting from the partial substitution is not nec-
essarily well-typed; in fact, we shall see in section 5 that
dinaturality for Curry-style system F is strongly connected
to this question of well-typedness.

Definition 3 (partial substitution) Given a termt in nor-
mal form such thatΓ ⊢ t : A, given a type variableX and
a typeD, thepartial substitution t〈D/X〉 of X byD in t is
defined as the termt〈D/X | Γ, A〉 which is constructed as
follows:

• (λxE .t)〈D/X | Γ, A1 → A2〉 = λxA1 .t〈D/X | Γ ∪
{x : A1}, A2〉

• (ΛY.t)〈D/X | Γ, ∀Y.A0〉 = ΛY.t〈D/X | Γ, A0〉

• (z)T1 . . . Tn〈D/X | Γ, A〉 = (z)T ′
1 . . . T ′

n with

– T ′
i = {Di[D/X]} if Ti = {Di}

– T ′
i = Ti〈D/X | Γ, Ai〉 if Ti is a term

where the typeAi for 0 ≤ i ≤ n is again defined by
induction:

– A0 is such thatz : A0 ∈ Γ

– Ai+1 = E1 if Ai = E1 → E2

– Ai+1 = E0[Di[D/X]/Y] if Ai = ∀Y.E0 and
Ti = {Di}.

Intuition. In more practical terms,t〈D/X〉 is obtained
from t by replacing any occurrence ofX in any instantia-
tion {E} by D, and by propagating this replacement at the
level of the lambda-abstractions. This propagation corre-
sponds to the first case in the above induction, whereλxE

is replaced byλxA1 .

Example. By applying the partial substitution ofX by D
to the termt = λx∀Y.(Y →Y)λyX .(x){X}y, we get

t〈D/X〉 = λx∀Y.(Y →Y)λyX .(x){D}y

In particular, forD = X⋆, we get t⋆ = t〈X⋆/X〉 =
λx∀Y.(Y →Y)λyX .(x){X⋆}y. Note that this term is not
well-typed in Church-style system F: the subterm(x){X∗}
requires an argument of typeX∗ but is giveny of typeX .

4.2 Produced types and expected types

The termt⋆ = t〈X⋆/X〉, for t normal form withΓ ⊢ t :
A, can be written as:

t⋆ = α1 . . . αP . (z) T1 . . . Tn (2)

where eachαi is either of the formλx
Aj

j (1 ≤ j ≤ p) or
ΛXk (1 ≤ k ≤ P − p). But this term is not well-typed
in general. This typing issue is captured by the following
definition:

Definition 4 (Produced types and expected types)For t⋆

as in (2) and0 ≤ i ≤ n, we define theith produced
type Πi

Γ(t⋆) ∈ Types and theith expected type Σi
Γ(t⋆) ∈

Types ∪ {†} as follows:

• Π0
Γ(t⋆) = D whereD is such thatΓ, x1 : A1, . . . , xp :

Ap ⊢ z : D, andΣ0
Γ(t⋆) = †

• if Πi
Γ(t⋆) = B1 → B2 then Σi+1

Γ (t⋆) = B1 and
Πi+1

Γ (t⋆) = B2

• if Πi
Γ(t⋆) = ∀Y.B andTi+1 = {D} thenΣi+1

Γ (t⋆) =
† andΠi+1

Γ (t⋆) = B[D/Y].

Moreover, as the typeΠn
Γ(t⋆) is always a type variable,

we noteVΓ(t⋆) = V(Πn
Γ(t⋆)) = Πn

Γ(t⋆).

Intuition. The idea behind these notions of produced and
expected types is that the subterm(z)T1 . . . Ti in t⋆ will
have the typeΠi

Γ(t⋆) providedthat eachTi which is a term
has the typeΣi

Γ(t⋆) (Σi
Γ(t⋆) being set to† if Ti is not a

6

term). So,Πi
Γ(t⋆) is the typeproducedby (z)T1 . . . Ti (pro-

vided well-typedness) andΣi
Γ(t⋆) is the typeexpectedfor

the termTi (to ensure well-typedness).
Of course, the termsTi will not always produce the type

Σi
Γ(t⋆), as we have setX 6= X⋆. And that is whyt⋆ is not

well-typed in general.

Example. Consider againt = λx∀Y.(Y →Y)λyX .(x){X}y,
for whicht⋆ = λx∀Y.(Y →Y)λyX .(x){X⋆}y. The produced
types oft⋆ are

Π0
∅(t

⋆) = ∀Y.Y Π1
∅(t

⋆) = X⋆ → X⋆ Π2
∅(t

⋆) = X⋆

whereas the expected types are

Σ0
∅(t

⋆) = Σ1
∅(t

⋆) = † Σ2
∅(t

⋆) = X⋆

The lack of typing fort⋆ comes from the conflict between
the expected typeΣ2

∅
(t⋆) = X⋆ and the produced type

Π0
Γ(y) = X with Γ = {x : ∀Y.(Y → Y), y : X}.

4.3 The dinaturality diagram

We are now equipped with the tools to express the con-
tent of the two terms resulting from the dinaturality dia-
gram.

Definition 5 (Upper and lower expansions)Let t be a
normal form such thatΓ ⊢ t : A, and sett∗ = t〈X⋆/X〉.
Consider also a termf such that⊢ f : B → C.

Then we define theupper expansion of t alongf onX ,
denotedt[f/X]u, as

t[f/X]u = JΓ,A(t∗)

whereJΓ,A(t∗) is defined, fort∗ given in (2), by:

JΓ,A(t∗) =
⇀
α1 . . .

⇀
αn.

{
(f) (z) V1 . . . Vn if V(A) = X

(z) V1 . . . Vn otherwise

with Vi = JΓ∪∆,Σi
(Ti) and:

•
⇀
αi = ΛXk if αi = ΛXk, and

⇀
αi = λx

Dj

j with

Dj = Aj [(C, B)/X][B/X∗] if αi = λx
Aj

j

• for 1 ≤ i ≤ n, Σi = Σi
Γ(t∗)

• ∆ = {x1 : A1, . . . , xp : Ap}

• JΓ,A({D}) = {D[B/X⋆]} if D ∈ Types.

We also define thelower expansion of t alongf on X ,
denotedt[f/X]l, as

t[f/X]l = KΓ,A(t∗)

whereKΓ,A(t∗) is defined, fort∗ given in (2), by:

KΓ,A(t∗) =
⇁
α1 . . .

⇁
αn.

{
(f) (z) W1 . . . Wn if VΓ(t∗) = X

(z) W1 . . . Wn otherwise

with Wi = KΓ∪∆,Σi
(Ti) and:

•
⇁
αi = ΛXk if αi = ΛXk, and

⇁
αi = λx

Dj

j with

Dj = Aj [(C, B)/X][C/X∗] if αi = λx
Aj

j

• for 1 ≤ i ≤ n, Σi = Σi
Γ(t∗)

• ∆ = {x1 : A1, . . . , xp : Ap}

• KΓ,A({D}) = {D[C/X⋆]} if D ∈ Types.

Intuition. Informally, the construction of the upper ex-
pansion (resp. the lower expansion) can be described as
follows:

• we consider the termt⋆ = t〈X⋆/X〉

• we replace each subtermT in t⋆ of expected typeX
(resp. of produced typeX) by (f) T

• we replace each occurrence ofλx
Aj

j by λx
Dj

j

where Dj = Aj [(C, B)/X][B/X∗] (resp. where
Dj = Aj [(C, B)/X][C/X∗])

• we replace each type instantiation{D} by
{D[B/X⋆]} (resp. by{D[C/X⋆]}).

Example. Consider once again the term
t = λx∀Y.(Y →Y)λyX .(x){X}y, with t⋆ =
λx∀Y.(Y →Y)λyX .(x){X⋆}y. The result of the upper
expansion oft alongf onX is

t[f/X]u = λx∀Y.(Y →Y)λyB.(f)(x){B}y

whereas the lower expansion oft alongf onX gives

t[f/X]l = λx∀Y.(Y →Y)λyB.(x){C}(f)y

These two terms are not equal in general. As these two
expansions will correspond to the two terms resulting from
the dinaturality diagram applied tot, this is consistent with
the fact thatt is not dinatural inX , which we already knew
from Corollary 1.

The symmetry between the upper and lower expansions
lies in the fact thatJΓ,A deals with the type expected fort∗

whereasKΓ,A deals with the type produced byt∗. Note by
the way that inJΓ,A the argumentΓ is not used, whereas in
KΓ,A the argumentA is not used.

The two expansions verify:

Γ[(C, B)/X] ⊢ t[f/X]u : A[(B, C)/X]

Γ[(C, B)/X] ⊢ t[f/X]l : A[(B, C)/X]

In fact, these two terms give us a complete description of
the dinaturality diagram. Indeed:

7

Theorem 2 Let X be a type variable, andt0 a term such
thatx : A1 ⊢ t0 : A2. If we notet = NF(t0), then for any
termf = λxB . u such that⊢ f : B → C, we have:

A1[(u, B)/X] ; t0[B/X] ; A2[(B, u)/X] =F t[f/X]u

A1[(C, u)/X] ; t0[C/X] ; A2[(u, C)/X] =F t[f/X]l

The proof of this theorem is given in Appendix B.

5 Dinatural terms for Curry-style system F

5.1 Presentation of the calculus

Curry-style system F is a variant of system F where there
is no type indication in the terms. Otherwise said, the gram-
mar of terms is the grammar ofpure lambda-terms:

τ ::= x | λx.τ | (τ)τ

The straightforward presentation of the calculus consists
in saying that the typing rules for the second-order quanti-
fier become

Γ ⊢Cu τ : A

Γ ⊢Cu τ : ∀X.A
if X /∈ FTV(Γ)

Γ ⊢Cu τ : ∀X.A

Γ ⊢Cu τ : A[B/X]

and that we consider terms modulo untypedβ- and η-
equalities. However this naive approach encounters many
troubles regarding the subject reduction of the calculus.
These questions have been analysed in [27, 18] forη-
reduction, and in [7] forη-expansion.

We will choose here an alternative approach, by consid-
ering that Curry-style system F is justChurch-style system
F modulo type erasure. If we had only theβ-equality in
the system, this would be equivalent to the usual presenta-
tion of Curry-style system F. As we also considerη-equality,
this approach will allow us to avoid the technical problems
related to subject reduction.

Concretely, we consider the operation of erasure from
Curry-style terms to pure lambda-terms:

erase(x) = x

erase(λxA.t) = λx.erase(t)

erase((t)u) = (erase(t))erase(u)

erase(ΛX.t) = erase(t)

erase((t){A}) = erase(t)

A Curry-style sequent is then of the formΓ ⊢Cu τ :
A, and it is valid if there existst such that erase(t) = τ
andΓ ⊢ t : A. We introduce a new congruencet =Cu u

between Church-style terms by adding to the usual Church-
style equalities the new equality:

t =ρ u ⇔ erase(t) = erase(u)

This leads to the following definition for dinaturality:

Definition 6 (dinatural term, Curry-style) A termτ such
thatx : A1 ⊢Cu τ : A2 is dinatural in X if, for everyt such
that erase(t) = τ andx : A1 ⊢ t : A2, the diagram

A1[B, B]
t[B/X]

// A2[B, B]
A2[B,u]

''NNNNNNN

A1[C, B]

A1[u,B] 77ppppppp

A1[C,u] ''NNNNNNN
A2[B, C]

A1[C, C]
t[C/X]

// A2[C, C]
A2[u,C]

77ppppppp

commutes modulo=Cu for everyu such thatx : B ⊢ u : C.

Of course dinaturality for a Curry-style term only makes
sense in a given typing context: saying thatτ is dinatural
in X has no absolute meaning, we have to give a typing
sequentx : A1 ⊢Cu τ : A2 for the question to become
meaningful.

One can define a composition on Curry-style terms,
again by substitution: givenx : A ⊢Cu σ : B and
x : B ⊢Cu τ : C, we defineσ; τ = τ [σ/x], and it is easy to
check thatx : A ⊢Cu σ; τ : C. Moreover, for two compos-
able Church-style termsu andv, we have

erase(u; v) = erase(u) ; erase(v)

Thus, given for two termst1, t2 such thatx : A1 ⊢
t1 : A2, x : A1 ⊢ t2 : A2 and erase(t1) =
erase(t2), and givenu such thatx : B ⊢ u : C, if
we note tup

1 = A1uB ; t1[B/X] ; A2Bu and tup
2 =

A1uB ; t2[B/X] ; A2Bu then we have:

erase(tup
1) = erase(A1uB); erase(t1); erase(A2Bu)

= erase(A1uB); erase(t2); erase(A2Bu)

= erase(tup
2)

and similarly for the lower term of the diagram. This simple
remark gives us a powerful lemma:

Lemma 1 A termτ such thatx : A1 ⊢Cu τ : A2 is dinat-
ural in X if and only if there exists a Church-style termt
such that erase(t) = τ , x : A1 ⊢ t : A2 and the diagram

A1[B, B]
t[B/X]

// A2[B, B]
A2[B,u]

''NNNNNNN

A1[C, B]

A1[u,B] 77ppppppp

A1[C,u] ''NNNNNNN
A2[B, C]

A1[C, C]
t[C/X]

// A2[C, C]
A2[u,C]

77ppppppp

8

commutes modulo=Cu for everyu such thatx : B ⊢ u : C.

Otherwise said, the dinaturality diagram needs to be
checked only on one Church-style termt in order to ensure
the dinaturality ofτ .

5.2 Characterisation of dinatural terms

Theorem 3 Let x : A1 ⊢Cu τ : A2 be a valid Curry-style
sequent. The following propositions are equivalent:

(i) τ is dinatural inX

(ii) for every Church-style termt0 such that erase(t0) = τ
andx : A1 ⊢ t0 : A2, and for everyD ∈ Types, we
have, fort = NF(t0):

x : A1 ⊢ t〈D/X〉 : A2

(iii) there exists a Church-style termt0 such that
erase(t0) = τ , x : A1 ⊢ t0 : A2 andX /∈ Z(t0).

PROOF: We first prove (ii)⇒(iii): as x : A1 ⊢Cu τ :
A2, we necessarily have a Church-style termt0 such that
erase(t0) = τ andx : A1 ⊢ t0 : A2. Then we choose
D ∈ Types such that none of the type variables inD ap-
pear inA1, A2 or t0, and we havex : A1 ⊢ t〈D/X〉 : A2

for t = NF(t0). By pulling back fromt〈D/X〉 all the
equalities that go fromt0 to t, we obtain a termt′0 such
that erase(t′0) = τ , x : A1 ⊢ t′0 : A2 andX /∈ Z(t′0).

To prove (iii)⇒(i), considert0 satisfying erase(t0) = τ ,
x : A1 ⊢ t0 : A2 andX /∈ Z(t0), and taket = NF(t0).
By Theorem 1, as we haveX /∈ Z(t), t is dinatural in
Church-style system F, so for any Church-style termu, the
two termstup = A1uB ; t[B/X] ; A2Bu and tlow =
A1Cu ; t[C/X] ; A2uC are equal modulo=F . Thus they
are also equal modulo=Cu and, thanks to Lemma 1,τ is
dinatural in Curry-style system F.

Finally, the proof that (i)⇒(ii) will make use of Theo-
rem 2. For this proof, we setA = A2 andΓ = {x : A1}, so
that we can reuse the namesAj in a different context.

Considerτ dinatural,t0 such that erase(t0) = τ andΓ ⊢
t0 : A, t = NF(t0) andt⋆ = t〈X⋆/X〉. We want to prove
thatΓ ⊢ t⋆ : A by induction ont⋆. Thus, we writet⋆ as
in (2):

t⋆ = α1 . . . αP . (z) T1 . . . Tn

where eachαi is either of the formλx
Aj

j (1 ≤ j ≤ p) or
ΛXk (1 ≤ k ≤ P − p) and we suppose as an induction
hypothesis2 that for1 ≤ i ≤ n, Γ ∪ ∆ ⊢ Ti : Σi

Γ(t⋆) with
∆ = {x1 : A1, . . . , xp : Ap}.This ensures that

Γ ∪ ∆ ⊢ (z)T1 . . . Tn : VΓ(t⋆) (3)

2The typeA has to be seen as the type expected fort⋆, as well as
Σi

Γ
(t⋆) is the typed expected forTi.

As in the proof of Corollary 1, we considerB = Y ,
C = Z → Y andu = λyZ .x, so thatx : B ⊢ u : C. If
f = λxB .u, then we cannot have(f)v =Cu v for a term
v, because(f)v has an extra lambda-abstraction. But we
need to havet[f/X]u =Cu t[f/X]l. So, by comparing the
expressions ofJΓ,A andKΓ,A in Definition 5 we see that
we must have:

V(A) = X ⇔ VΓ(t⋆) = X

As V(A) andVΓ(t⋆) can only differ by occurrences ofX⋆

andX , this means thatV(A) = VΓ(t⋆).
Together with (3), this implies thatΓ ∪ ∆ ⊢

(z)T1 . . . Tn : V(A). By construction of the partial sub-
stitution, theαi’s wear the proper type indication, so that
Γ ⊢ t⋆ : A, and we are done with the induction.

Thus, the termt⋆ is well-typed in this case! But then, as
X⋆ does not appear inΓ or in A, we haveΓ ⊢ t⋆[D/X∗] :
A for anyD, which meansΓ ⊢ t〈D/X〉 : A. �

From Theorem 3 one can extract analgorithm to check
whether the termτ such thatx : A1 ⊢Cu τ : A2 is dinatural.
Indeed, suppose that we have at disposal a termt0 such that
erase(t0) = τ andx : A1 ⊢ t0 : A2. Then we consider a
typeD such thatX /∈ FTV(D), we constructt = NF(t0)
and we check whetherx : A1 ⊢ t〈D/X〉 : A2 (this is
decidable). If the termτ is dinatural, then (i)⇒(ii) ensures
that x : A1 ⊢ t〈D/X〉 : A2. Reciprocally, ifx : A1 ⊢
t〈D/X〉 : A2 then (iii)⇒(i) ensures thatτ is dinatural.

Now, if we do not have this termt0, we can find it by
enumerating all the Church-style terms whose erasure isτ ,
until we find one such thatx : A1 ⊢ t0 : A2. As we
know thatx : A1 ⊢Cu τ : A2, this process will termi-
nate. Thus the dinaturality of a Curry-style termτ such that
x : A1 ⊢Cu τ : A2 is a decidable question.

Example 1. Consider the Curry-style termτ =
λxλy.(x)y, such that⊢ τ : (∀Y.Y → Y) → X → X .
The Church-style termt1 = λx∀Y.Y →Y λyX .(x){X}y is
such that erase(t1) = τ and ⊢ t1 : (∀Y.Y → Y) →
X → X . Now, givenD ∈ Types, we havet1〈D/X〉 =
λx∀Y.Y →Y λyX .(x){D}y. So, in general (actually, as soon
asD 6= X) we have:

0 t1〈D/X〉 : (∀Y.Y → Y) → X → X

Thus,τ is not dinatural inX in this typing context.

Example 2. Consider now the same Curry-style term
τ = λxλy.(x)y, but typed as⊢ τ : (∀Y.Y →
X) → (∀Z.Z) → X . The Church-style termt2 =
λx∀Y.Y →Xλy∀Z.Z .(x){X} y{X} is such that erase(t2) =
τ and ⊢ t2 : (∀Y.Y → X) → (∀Z.Z) →
X . For any D ∈ Types, we have t2〈D/X〉 =
λx∀Y.Y →Xλy∀Z.Z .(x){D} y{D} so:

⊢ t2〈D/X〉 : (∀Y.Y → X) → (∀Z.Z) → X

9

This means thatτ is dinatural inX in this typing context.

Further directions

Among the future developments of this work lies a pos-
sible connection between the process of simple expansion
described in this article, and the programming concept of
hooking(see for example [6]).

Another perspective is the analysis of the ideas presented
in [9], where dinaturality is avoided by strongly restricting
the category we are working on. This analysis could be
done either syntactically, in the spirit of the present work,
or semantically using game models.

Acknowledgements. I would like to thank Philip Scott,
who shared with me his deep knowledge on the question
of dinaturality, and Olivier Laurent for his many precious
comments on this article.

References

[1] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric
polymorphism. Theoretical Computer Science, 121:9–58,
1993.

[2] E. S. Bainbridge, P. J. Freyd, A. Scedrov, and P. J. Scott.
Functorial polymorphism.Theoretical Computer Science,
70(1):35–64, 1990.

[3] J. de Lataillade. Strachey parametricity and game seman-
tics. Submitted for publication. Available athttp://
www.pps.jussieu.fr/~delatail/param.pdf .

[4] J. de Lataillade. Quantification du second ordre dans les
jeux - Application aux isomorphismes de types. Thèse de
Doctorat, Université Paris 7, November 2007.

[5] P. J. Freyd, J.-Y. Girard, A. Scedrov, and P. J. Scott. Seman-
tic parametricity in polymorphic lambda calculus. InPro-
ceedings of the third annual symposium on Logic In Com-
puter Science, pages 274–279. IEEE, IEEE Computer Soci-
ety Press, 1988.

[6] G. Froehlich, H. J. Hoover, L. Liu, and P. Sorenson. Hooking
into object-oriented application frameworks. InProceedings
of the 19th International Conference on Software Engineer-
ing, pages 491–501, New York, NY, USA, 1997. ACM.

[7] N. Ghani. Eta expansions in system F. Technical report,
LIENS-DMI, Ecole Normale Superieure, 1996.

[8] J.-Y. Girard. Interprétation fonctionnelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Thèse de doc-
torat, Université Paris VII, 1972.

[9] J.-Y. Girard. The system F of variable types, fifteen years
later. Theoretical Computer Science, 45:159–192, 1986.

[10] J.-Y. Girard, A. Scedrov, and P. J. Scott. Normal
forms and cut-free proofs as natural transformations. In
Y. Moschovakis, editor,Logic from Computer Science, vol-
ume 21, pages 217–242. MSRI Publications, Springer, 1992.

[11] M. Hasegawa. Recursion from cyclic sharing: Traced
monoidal categories and models of cyclic lambda calculi. In
Proceedings of the Third International Conference on Typed

Lambda Calculi and Applications, pages 196–213, London,
UK, 1997. Springer-Verlag.

[12] D. Hughes. Hypergame semantics: full completeness for
system F. D.Phil. thesis, Oxford University, 2000.

[13] A. Joyal, R. Street, and D. Verity. Traced monoidal cate-
gories.Mathematical Proceedings of the Cambridge Philo-
sophical Society, 119:447–468, 1996.

[14] J. Laird. Exceptions, continuations and macro-
expressiveness. InProceedings of the 11th European
Symposium on Programming Languages and Systems,
pages 133–146, London, UK, 2002. Springer-Verlag.

[15] S. M. Lane. Categories for the Working Mathematician.
Springer-Verlag, New York, Second edition, 1998.

[16] O. Laurent. Classical isomorphisms of types.Mathemat-
ical Structures in Computer Science, 15(5):969–1004, Oct.
2005.

[17] F. W. Lawvere. Equality in hyperdoctrines and the compre-
hension schema as an adjoint functor. InProceedings on
Applications of Categorical Logic, 1970.

[18] J. C. Mitchell. Polymorphic type inference and containment.
Inf. Comput., 76(2-3):211–249, 1988.

[19] A. Murawski and L. Ong. Evolving games and essen-
tial nets for affine polymorphism. In S. Abramsky, editor,
Typed Lambda Calculi and Applications ’01, volume 2044
of LNCS. Springer, 2001.

[20] C.-H. L. Ong. On model-checking trees generated by higher-
order recursion schemes. InProceedings of the 21st Annual
IEEE Symposium on Logic in Computer Science, pages 81–
90, Washington, DC, USA, 2006. IEEE Computer Society.

[21] G. Plotkin and M. Abadi. A logic for parametric poly-
morphism. In M. Bezem and J. F. Groote, editors,Inter-
national Conference on Typed Lambda Calculi and Appli-
cations, pages 361–375, Utrecht, The Netherlands, 1993.
Springer-Verlag.

[22] J. C. Reynolds. Towards a theory of type structure. InPro-
gramming Symposium, Proceedings Colloque sur la Pro-
grammation, pages 408–423, London, UK, 1974. Springer-
Verlag.

[23] J. C. Reynolds. Types, abstraction and parametric polymor-
phism. InInternational Federation for Information Process-
ing Congress, pages 513–523, 1983.

[24] R. A. G. Seely. Categorical semantics for higher-order
polymorphic lambda-calculus.Journal of Symbolic Logic,
52(4):969–989, 1987.

[25] C. Strachey. Fundamental concepts in programming lan-
guages (reprinting of a course given in 1967).Higher-Order
and Symbolic Computation, 13(1):11–49, 2000.

[26] P. Wadler. Theorems for free! InProceedings 4th Int. Conf.
on Funct. Prog. Languages and Computer Arch., FPCA’89,
London, UK, 11–13 Sept 1989, pages 347–359. ACM Press,
New York, 1989.

[27] J. B. Wells.Type inference for system F with and without the
eta rule. PhD thesis, Boston University, Boston, MA, USA,
1996. Major Professor-Assaf J. Kfoury.

10

A Proof of Theorem 1

Theorem 1 Let X be a type variable, andt0 a term such
thatx : A1 ⊢ t0 : A2. Considert = NF(t0), and suppose
that X /∈ Z(t). Then for any termf = λxB . u such that
⊢ f : B → C, we have:

A1[(u, B)/X]; t0[B/X]; A2[(B, u)/X] =F t[f/X] (4)

A1[(C, u)/X]; t0[C/X]; A2[(u, C)/X] =F t[f/X] (5)

which means thatt0 is dinatural inX .

PROOF: We first prove Equation (4). For dealing with
the proof, we consider two mutually recursive functions on
normal forms,FΓ(t) andGΓ(t), which are defined on Fig-
ure 2.

To prove (4), it suffices to show the following:

A1[(u, B)/X] ; t[B/X] =F FΓ(t) (6)

FΓ(t) ; A2[(B, u)/X] =F EΓ(t) (7)

with Γ = {x : Â1} (one can work directly witht instead of
t0, ast =F t0).

To prove the equality (6), we consider a term variable
y not appearing int, we settB = t[B/X][y/x] and we
note thatA1[(u, B)/X] ; t[B/X] = tB[(A1fB)x/y].
Then we proceed by induction3 on A1 to show that
tB[(A1fB)x/y] =F FΓ(t):

• If A1 contains no arrow thenA1fB = idA1[B/X] and the
result is immediate.

• If A1 = ∀1.(∀2.A
′
1 → . . . → A′

p → X) → Z where
each∀i is a sequence of quantifiers∀X i

1 . . .∀X i
Ni

andZ is
a type variable, then

A1fB = ∀1.(∀2.A
′
1fB → . . . → A′

pfB → f) → Z[B/X]

The variablex being of typeA1[C, B], we can write, by
η-expanding it:

x =F Λ1λzD.(x)X1(Λ2.λx
cA′

1

1 . . . λx
cA′

p
p .(z)X2x1 . . . xp)

with D = ∀2.A
′
1 → . . . → A′

p → X , Λi = ΛX i
1 . . . ΛX i

Ni

andXi = {X i
1} . . . {X i

Ni
}. Thus:

(A1fB)x =F Λ1λzD[B/X].(x)X1(Λ2.λx
cA′

1

1 . . . λx
cA′

p
p .

(f)(z)X2(A′
1fB)x1 . . . (A′

pfB)xp)

3We take steps in this induction to make the ideas more obvious, but
the general case is in fact given by the fourth case of the induction.

We can then write, for̃t = tB[(A1fB)x/y]:

t̃ =F tB[Λ1λzD[B/X].(x)X1(Λ2.λx
cA′

1

1 . . . λx
cA′

p
p .

(f)(z)X2(A′
1fB)x1 . . . (A′

pfB)xp)/y]

t̃ =F tB[Λ1λzD[B/X].(x)X1(Λ2.λx
cA′

1

1 . . . λx
cA′

p
p .

(f)(z)y1 . . . yp)/y][(A′
ifB)xi/yi]i

wherey1, . . . , yp are chosen fresh intB.
This gives us an inductive construction that is exactly

equivalent to the definition ofFΓ(t) with Γ = {x : Â1}. In-
deed, when constructingFΓ(t), any time we seex in t ap-
plied to an argumentT , we replace this argument byGΓ(T):
this corresponds to the application off in the above for-
mula; and then, all the variables that are bound in the head
of T are added to the contextΓ, so we will treat them like
x: this corresponds to the substitution[(A′

ifB)xi/yi]i in
the above formula.

• If A1 = ∀1.(∀2.A
′
1 → . . . → A′

p → Y) → Z with
Y 6= X , then

A1fB = ∀1.(∀2.A
′
1fB → . . . → A′

pfB → Y) → Z[B/X]

Again we rewritex as

x =F Λ1λzD.(x)X1(Λ2.λx
cA′

1

1 . . . λx
cA′

p
p .(z)X2x1 . . . xp)

so that:

(A1fB)x =F Λ1λzD[B/X].(x)X1(Λ2.λx
cA′

1

1 . . . λx
cA′

p
p .

(z)X2(A′
1fB)x1 . . . (A′

pfB)xp)

and finally, fort̃ = tB[(A1fB)x/y]:

t̃ =F tB [Λ1λzD[B/X].(x)X1(Λ2.λx
cA′

1

1 . . . λx
cA′

p
p .

(z)X2y1 . . . yp)/y][(A′
ifB)xi/yi]i

wherey1, . . . , yp are chosen fresh intB.
Again, this is equivalent to the definition ofFΓ(t) with

Γ = {x : Â1}: any time we seex in t applied to an argu-
mentT , we replace this argument byGΓ(T) (but this time
we do not applyf becauseVΓ(T) 6= X), and all the vari-
ables that are bound in the head ofT are added to the con-
textΓ, so we will treat them likex.

• If A1 = ∀1.D1 → . . . → Dk → Z where eachDj has
the formDj = ∀j+1.A

j
1 → . . . → Aj

pj
→ Yj , then we can

write

x =F Λ1λzD1

1 . . . λzDk

k .(x)X1(Λ2.λx
cA1

1

1,1 . . . λx
cA1

p

1,p1
.

(z1)X
2x1,1 . . . x1,p1

) . . . (Λk+1.λx
cAk

1

k,1 . . . λx
dAk

pk

k,pk
.

(zk)Xk+1xk,1 . . . xk,pk
)

11

Considert defined as in (1):

t = α1 . . . αP . (z) T1 . . . Tn

where eachαi is either of the formλx
Aj

j (1 ≤ j ≤ p) or ΛXk (1 ≤ k ≤ P − p).

Then we set:

FΓ(t) = αB
1 . . . αB

P .

{
(z) FΓ(T1) . . .FΓ(Tn) if z /∈ Γ

(z) GΓ(T1) . . .GΓ(Tn) if z ∈ Γ

GΓ(t) = α̂1 . . . α̂P .






(z) FΓ∪∆(T1) . . .FΓ∪∆(Tn) if z /∈ Γ andVΓ(t) 6= X

(z) GΓ∪∆(T1) . . .GΓ∪∆(Tn) if z ∈ Γ andVΓ(t) 6= X

(f) (z) FΓ∪∆(T1) . . .FΓ∪∆(Tn) if z /∈ Γ andVΓ(t) = X

(f) (z) GΓ∪∆(T1) . . .GΓ∪∆(Tn) if z ∈ Γ andVΓ(t) = X

where

• α̂i = ΛXk if αi = ΛXk, andα̂i = λx
cAj

j if αi = λx
Aj

j

• αB
i = ΛXk if αi = ΛXk, andαB

i = λx
Aj [B/X]
j if αi = λx

Aj

j

• ∆ = {x1 : A1, . . . , xp : Ap}

• FΓ({D}) = GΓ({D}) = {D} if D ∈ Types

F ′
Γ(t) = αC

1 . . . αC
P .






(z) F ′
Γ(T1) . . .F ′

Γ(Tn) if z /∈ Γ

(z) G′
Γ(T1) . . .G′

Γ(Tn) if z ∈ Γ andVΓ(t) 6= X

(f) (z) G′
Γ(T1) . . .G′

Γ(Tn) if z ∈ Γ andVΓ(t) = X

G′
Γ(t) = α̂1 . . . α̂P .






(z) F ′
Γ∪∆(T1) . . .F ′

Γ∪∆(Tn) if z /∈ Γ

(z) G′
Γ∪∆(T1) . . .G′

Γ∪∆(Tn) if z ∈ Γ andVΓ(t) 6= X

(f) (z) G′
Γ∪∆(T1) . . .G′

Γ∪∆(Tn) if z ∈ Γ andVΓ(t) = X

where

• α̂i = ΛXk if αi = ΛXk, andα̂i = λx
cAj

j if αi = λx
Aj

j

• αC
i = ΛXk if αi = ΛXk, andαC

i = λx
Aj [C/X]
j if αi = λx

Aj

j

• ∆ = {x1 : A1, . . . , xp : Ap}

• F ′
Γ({D}) = G′

Γ({D}) = {D} if D ∈ Types

Figure 2. Constructions used in the proof of Theorem 1

12

so that

(A1fB)x =F Λ1λz
D1[B/X]
1 . . . λz

Dk[B/X]
k .(x)X1

(Λ2.λx
cA1

1

1,1 . . . λx
cA1

p

1,p1
.(v1)(z1)X

2(A1
1fB)x1,1

. . . (A1
p1

fB)x1,p1
) . . . (Λk+1.λx

cAk
1

k,1 . . . λx
dAk

pk

k,pk
.

(vk)(zk)Xk+1(Ak
1fB)xk,1 . . . (Ak

pk
fB)xk,pk

)

with vj = f if Yj = X andvj = idYj
otherwise. Finally,

we obtain, for̃t = tB [(A1fB)x/y]:

t̃ =F tB[λz
D1[B/X]
1 . . . λz

Dk[B/X]
k .(x)X1(Λ2.λx

cA1

1

1,1 . . .

λx
cA1

p

1,p1
.(v1)(z1)X

2y1,1 . . . y1,p1
) . . . (Λk+1.λx

cAk
1

k,1

. . . λx
dAk

pk

k,pk
.(vk)(zk)Xk+1yk,1 . . . yk,pk

)/y]

[(Ai
jfB)xi,j/yi,j]i,j

where all theyi,j ’s are chosen fresh.
This is again equivalent to the definition ofFΓ(t) with

Γ = {x : Â1}: in particular whenT is an argument ofx,
we applyf in T exactly in the case whereVΓ(T) = X .

• Every other form for the typeA1 can be related to
the previous case by applying the isomorphism∀Y.A →
B ≃ A → ∀Y.B (with Y /∈ FTV(A)). The result for
tB[(A1fB)x/y] is then similar to the one given above (only
the positions of theΛ’s and theX’s change), and can be
shown to be equal toFΓ(t).

For Equation (7) we note thatFΓ(t) ; A2[(B, u)/X] =
(A2Bf)FΓ(t) and we use again an induction, this time on
A2:

• If A2 = X then(A2Bf)FΓ(t) = (f)FΓ(t). And the in-
ductive construction ofFΓ(t) only calls the functionGΓ(t)
in this case, so we have(f)FΓ(t) = EΓ(t).

• If A2 = Y with Y 6= X then(A2Bf)FΓ(t) = FΓ(t).
And the inductive construction ofFΓ(t) only calls the func-
tion GΓ(t) in this case, so we haveFΓ(t) = EΓ(t).

• If A2 = ∀1.D1 → . . . → Dk → Z where eachDj has
the formDj = ∀j+1.A

j
1 → . . . → Aj

pj
→ Yj , then for any

termh of typeA2[B/X] we can write

h =FΛ1λz
D1[B/X]
1 . . . λz

Dk[B/X]
k .(h)X1(Λ2.λx

A1

1
[B/X]

1,1

. . . λx
A1

p[B/X]

1,p1
.(z1)X

2x1,1 . . . x1,p1
) . . . (Λk+1.

λx
Ak

1
[B/X]

k,1 . . . λx
Ak

pk
[B/X]

k,pk
.(zk)Xk+1xk,1 . . . xk,pk

)

so that

(A2Bf)h =F Λ1λz
cD1

1 . . . λz
cDk

k .(v)(h)X1(Λ2.λx
A1

1
[B/X]

1,1

. . . λx
A1

p[B/X]

1,p1
.(z1)X

2(A1
1Bf)x1,1 . . . (A1

p1
Bf)

x1,p1
) . . . (Λk+1.λx

Ak
1
[B/X]

k,1 . . . λx
Ak

pk
[B/X]

k,pk
.

(zk)Xk+1(Ak
1Bf)xk,1 . . . (Ak

pk
Bf)xk,pk

)

with v = f if Z = X andv = idZ otherwise. Now let us
takeh = FΓ(t); we can rewrite it as

FΓ(t) =F ΛY1 . . . ΛYN1
λy

D1[B/X]
1 . . . λy

Dk[B/X]
k . F

for some F = (z)T1 . . . Tn. If we note F ′ =
F [X1

1/Y1] . . . [X
1
N1

/YN1
], we get, for̆t = (A2Bf)FΓ(t):

t̆ =F Λ1λz
cD1

1 . . . λz
cDk

k .(v) F ′[Λ2.λx
A1

1
[B/X]

1,1 . . .

λx
A1

p[B/X]

1,p1
.(z1)X

2y1,1 . . . y1,p1
/y1] . . . [Λk+1.

λx
Ak

1
[B/X]

k,1 . . . λx
Ak

pk
[B/X]

k,pk
.(zk)Xk+1yk,1 . . .

yk,pk
/yk] [(Ai

jBf)xi,j/yi,j]i,j

where theyi,j ’s are again chosen fresh.
The result of this construction is exactly the termEΓ(t):

indeed, the variablesy1, . . . , yk andyi,j in F ′ are the places,
in the definition ofFΓ(t), where we have usedFΓ and not
GΓ. Hence, with the application ofv at those places, we
retrieveEΓ(t).

• Every other form for the typeA2 is isomorphic to the
above form, and the result remains true in these cases (we
just have to move the positions of theΛ’s and theX’s in the
formulas).

Thus we have proved the equality (4). The proof of (5)
is very similar to what we have done above, with two new
functionsF ′

Γ(t) andG′
Γ(t) defined on Figure 2.

The equalities to prove are in this case:

A1[(C, u)/X] ; t[C/X] =F F ′
Γ(t) (8)

F ′
Γ(t) ; A2[(u, C)/X] =F EΓ(t) (9)

with Γ = {x : Â1}. �

B Proof of Theorem 2

Theorem 2 Let X be a type variable, andt0 a term such
thatx : A1 ⊢ t0 : A2. If we notet = NF(t0), then for any
termf = λxB . u such that⊢ f : B → C, we have:

A1[(u, B)/X]; t0[B/X]; A2[(B, u)/X] =F t[f/X]u (10)

A1[(C, u)/X]; t0[C/X]; A2[(u, C)/X] =F t[f/X]l (11)

13

Considert⋆ defined as in (2):
t⋆ = α1 . . . αP . (z) T1 . . . Tn

where eachαi is either of the formλx
Aj

j (1 ≤ j ≤ p) or ΛXk (1 ≤ k ≤ P − p).

Then we set:

MΓ,A(t∗) = αB
1 . . . αB

P .

{
(z) MΓ,Σ1

(T1) . . .MΓ,Σn
(Tn) if z /∈ Γ

(z) NΓ,Σ1
(T1) . . .NΓ,Σn

(Tn) if z ∈ Γ

NΓ,A(t∗) =
⇀
α1 . . .

⇀
αP .






(z) NΓ∪∆,Σ1
(T1) . . .NΓ∪∆,Σn

(Tn) if z /∈ Γ andV(A) 6= X

(z) NΓ∪∆,Σ1
(T1) . . .NΓ∪∆,Σn

(Tn) if z ∈ Γ andV(A) 6= X

(f) (z) MΓ∪∆,Σ1
(T1) . . .MΓ∪∆,Σn

(Tn) if z /∈ Γ andV(A) = X

(f) (z) NΓ∪∆,Σ1
(T1) . . .NΓ∪∆,Σn

(Tn) if z ∈ Γ andV(A) = X

where

•
⇀
αi = ΛXk if αi = ΛXk, and

⇀
αi = λx

Dj

j with Dj = Aj [(C, B)/X][B/X∗] if αi = λx
Aj

j

• αB
i = ΛXk if αi = ΛXk, andαB

i = λx
Ej

j with Ej = Aj [B/X][B/X⋆] if αi = λx
Aj

j

• for 1 ≤ i ≤ n, Σi = Σi
Γ(t∗).

• ∆ = {x1 : A1, . . . , xp : Ap}

• MΓ,A({D}) = NΓ,A({D}) = {D[B/X⋆]} if D ∈ Types

M′
Γ,A(t∗) = αC

1 . . . αC
P .






(z) M′
Γ,Σ1

(T1) . . .M′
Γ,Σn

(Tn) if z /∈ Γ

(z) N ′
Γ,Σ1

(T1) . . .N ′
Γ,Σn

(Tn) if z ∈ Γ andVΓ(t∗) 6= X

(f) (z) N ′
Γ,Σ1

(T1) . . .N ′
Γ,Σn

(Tn) if z ∈ Γ andVΓ(t∗) = X

N ′
Γ,A(t∗) =

⇁
α1 . . .

⇁
αP .






(z) M′
Γ∪∆,Σ1

(T1) . . .M′
Γ∪∆,Σn

(Tn) if z /∈ Γ

(z) N ′
Γ∪∆,Σ1

(T1) . . .N ′
Γ∪∆,Σn

(Tn) if z ∈ Γ andVΓ(t∗) 6= X

(f) (z) N ′
Γ∪∆,Σ1

(T1) . . .N ′
Γ∪∆,Σn

(Tn) if z ∈ Γ andVΓ(t∗) = X

where

•
⇁
αi = ΛXk if αi = ΛXk, and

⇁
αi = λx

Dj

j with Dj = Aj [(C, B)/X][C/X∗] if αi = λx
Aj

j

• αC
i = ΛXk if αi = ΛXk, andαC

i = λx
Ej

j with Ej = Aj [C/X][C/X⋆] if αi = λx
Aj

j

• for 1 ≤ i ≤ n, Σi = Σi
Γ(t∗).

• ∆ = {x1 : A1, . . . , xp : Ap}

• M′
Γ,A({D}) = N ′

Γ,A({D}) = {D[C/X⋆]} if D ∈ Types

Figure 3. Constructions used in the proof of Theorem 2

14

PROOF: Let us first consider Equation (10), and set
t⋆ = t〈X⋆/X〉. As in the proof of Theorem 1, we consider
two mutually recursive functions,MΓ,A(t∗) andNΓ,A(t∗),
the difference being that we work witht∗ (which is is not
necessarily well-typed), and that there is a new parameter
A ∈ Types ∪ {†}. These functions are defined on Fig-
ure 3.

The two equalities we have to prove are:

A1[(u, B)/X] ; t[B/X] =F MΓ,A(t∗) (12)

MΓ,A(t∗) ; A2[(B, u)/X] =F JΓ,A(t∗) (13)

with Γ = {x : A1} andA = A2 (again we work witht
instead oft0 becauset =F t0).

We start by proving (12): considering a term variabley
not appearing int and settingtB = t[B/X][y/x], we note
thatA1[(u, B)/X] ; t = tB [(A1fB)x/y] and we proceed
by induction onA1:

• If A1 = ∀1.D1 → . . . → Dk → Z where eachDj has
the formDj = ∀j+1.A

j
1 → . . . → Aj

pj
→ Yj (where each

∀i is a sequence of quantifiers), then we can write

x =F Λ1λzD1

1 . . . λzDk

k .(x)X1(Λ2.λx
cA1

1

1,1 . . . λx
cA1

p

1,p1
.

(z1)X
2x1,1 . . . x1,p1

) . . . (Λk+1.λx
cAk

1

k,1 . . .

λx
dAk

pk

k,pk
.(zk)Xk+1xk,1 . . . xk,pk

)

where, as before,Λi = ΛX i
1 . . .ΛX i

Ni
and Xi =

{X i
1} . . . {X i

Ni
}. Thus

(A1fB)x =F Λ1λz
D1[B/X]
1 . . . λz

Dk[B/X]
k .(x)X1(Λ2.

λx
cA1

1

1,1 . . . λx
cA1

p

1,p1
.(v1)(z1)X

2(A1
1fB)x1,1 . . .

(A1
p1

fB)x1,p1
) . . . (Λk+1.λx

cAk
1

k,1 . . . λx
dAk

pk

k,pk
.

(vk)(zk)Xk+1(Ak
1fB)xk,1 . . . (Ak

pk
fB)xk,pk

)

with vj = f if Yj = X andvj = idYj
otherwise. Finally,

we obtain, for̃t = tB [(A1fB)x/y]:

t̃ =F tB[λz
D1[B/X]
1 . . . λz

Dk[B/X]
k .(x)X1(Λ2.λx

cA1

1

1,1 . . .

λx
cA1

p

1,p1
.(v1)(z1)X

2y1,1 . . . y1,p1
) . . . (Λk+1.λx

cAk
1

k,1

. . . λx
dAk

pk

k,pk
.(vk)(zk)Xk+1yk,1 . . . yk,pk

)/y]

[(Ai
jfB)xi,j/yi,j]i,j

where theyi,j ’s are chose fresh.
This gives us an inductive construction that is exactly

equivalent to the definition ofMΓ,A(t) with Γ = {x : Â1}.
Indeed, when constructingMΓ,A(t⋆), any time we seex or

x in t applied to a list of argumentsT1 . . . Tn, we replace
each argumentTi by NΓ,A(Ti): that is, we apply(f) to
this argument ifV(Di) = X , otherwise we do nothing;
this corresponds exactly to the application ofv in the above
formula. Then, all the variables that are bound in the head
of T are added to the contextΓ, so we will treat them like
x: this corresponds to the substitution[(A′

ifB)xi/yi]i in
the above formula.

• Every other form for the typeA2 is isomorphic to the
above form, and the result remains true in these cases (we
just have to move the positions of theΛ’s and theX’s in the
formulas).

For the equality (13) we note that
MΓ,A(t) ; A2[(B, u)/X] = (A2Bf)FΓ(t) and we
proceed by induction onA2:

• If A2 = ∀1.D1 → . . . → Dk → Z where eachDj has
the formDj = ∀j+1.A

j
1 → . . . → Aj

pj
→ Yj , then for any

termh of typeA2[B/X] we can write

h =F Λ1λz
D1[B/X]
1 . . . λz

Dk[B/X]
k .(h)X1(Λ2.λx

A1

1
[B/X]

1,1

. . . λx
A1

p[B/X]

1,p1
.(z1)X

2x1,1 . . . x1,p1
) . . . (Λk+1.

λx
Ak

1
[B/X]

k,1 . . . λx
Ak

pk
[B/X]

k,pk
.(zk)Xk+1xk,1 . . . xk,pk

)

so that

(A2Bf)h =F Λ1λz
cD1

1 . . . λz
cDk

k .(v)(h)X1(Λ2.λx
A1

1
[B/X]

1,1

. . . λx
A1

p[B/X]

1,p1
.(z1)X

2(A1
1Bf)x1,1 . . . (A1

p1
Bf)

x1,p1
) . . . (Λk+1.λx

Ak
1
[B/X]

k,1 . . . λx
Ak

pk
[B/X]

k,pk
.

(zk)Xk+1(Ak
1Bf)xk,1 . . . (Ak

pk
Bf)xk,pk

)

with v = f if Z = X andv = idZ otherwise. Now let us
takeh = MΓ,A(t); we can rewrite it as

MΓ,A(t) =F ΛY1 . . . ΛYN1
λy

D1[B/X]
1 . . . λy

Dk[B/X]
k . M

for some M = (z)T1 . . . Tn. If we note
M ′ = M [X1

1/Y1] . . . [X
1
N1

/YN1
], we obtain, for

t̆ = (A2Bf)MΓ,A(t):

t̆ =F Λ1λz
cD1

1 . . . λz
cDk

k .(v) M ′[Λ2.λx
A1

1
[B/X]

1,1 . . .

λx
A1

p[B/X]

1,p1
.(z1)X

2y1,1 . . . y1,p1
/y1] . . . [Λk+1.

λx
Ak

1
[B/X]

k,1 . . . λx
Ak

pk
[B/X]

k,pk
.(zk)Xk+1yk,1 . . .

yk,pk
/yk][(Ai

jBf)xi,j/yi,j]i,j

The result of this construction is exactly the termJΓ,A(t):
indeed, the variablesy1, . . . , yk and yi,j in M ′ are the
places, in the definition ofMΓ,A(t), where we have used

15

MΓ,A and notNΓ,A. Hence, with the application ofv at
those places, we retrieveJΓ,A(t).

• Every other form for the typeA2 is isomorphic to the
above form, and the result remains true in these cases (we
just have to move the positions of theΛ’s and theX’s in the
formulas).

It might be surprising to see the similarity between these
two inductions and the proof of Theorem 1, whereas the
present case is supposed to be more complicated. The rea-
son for this is that, with the partial substitutiont〈X⋆/X〉,
we transformed every instantiation byX into an instantia-
tion by X⋆, so that we got rid of the instantiations byX .
Thus, after this substitution, things are very similar to the
case whereX /∈ Z(t).

The proof of Equation (11) is very similar to what we
have just done, with two new functionsM′

Γ,A(t⋆) and
N ′

Γ,A(t⋆) defined on Figure 3.
The two equalities we have to prove are in this case:

A1[(C, u)/X] ; t[C/X] =F M′
Γ,A(t∗) (14)

M′
Γ,A(t∗) ; A2[(u, C)/X] =F KΓ,A(t∗) (15)

with Γ = {x : A1} andA = A2. �

16

