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Curry-style system F, i.e. system F with no explicit types in terms, can be seen as a core

presentation of polymorphism from the point of view of programming languages.

This paper gives a characterisation of type isomorphisms for this language, by using a

game model whose intuitions comes both from the syntax and from the game semantics

universe. The model is composed of: an untyped part to interpret terms, a notion of arena

to interpret types, and a typed part to express the fact that an untyped strategy σ plays on

an arena A.

By analysing isomorphisms in the model, we prove that the equational system

corresponding to type isomorphisms for Curry-style system F is the extension of the

equational system for Church-style isomorphisms with a new, non-trivial equation:

∀X.A ≃ε A[∀Y.Y/X] if X appears only positively in A.

1. Introduction

Types isomorphisms. The problem of type isomorphisms is a purely syntactical ques-

tion: two types A and B are isomorphic if there exist two terms f : A→ B and g : B→ A

such that f ◦ g = idB and g ◦ f = idA. This equivalence relation on data types allows to

translate a program from one type to the other without any change on the calculatory

meaning of the program. Thus, a search in a library up to type isomorphism will help

the programmer to find all the functions that can potentially serve his purpose, and to

reuse them in the new typing context (Rittri, 1991). This is particularly appealing with

functional languages, because in this case the type can really be seen as a partial specifi-

cation of the program: such a library search up to isomorphisms has been implemented

in particular for Caml Light by Jérôme Vouillon. It can also be used in proof assistants

to help finding proofs in libraries and reusing them (Barthe and Pons, 2001) (for more

details on the use of type isomorphisms in computer science, see (Di Cosmo, 1995)).

From a more general point of view, type isomorphisms are the natural answer to the

question of equivalence between types in a programming language.

The question of characterising these type isomorphisms is then a very simple problem

to formulate, however its resolution is often non-trivial, especially when dealing with
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polymorphism like in system F (Girard, 1972; Reynolds, 1974). Roberto Di Cosmo has

solved syntactically this question for Church-style system F (i.e. system F where types

appear explicitly in the terms) by giving an equational system on types equivalent to

type isomorphisms (Di Cosmo, 1995). In a preceding work (de Lataillade, 2007), we

have given a new proof of this result by using a game semantics model of Church-style

system F. In this more geometrical approach, types were interpreted by an arborescent

structure, hyperforests: the natural equality for this structure happened to be exactly the

equality induced by type isomorphisms. The efficiency of game semantics in this context

was an incitement to go further and to explore the possibility of resolving this question

for other languages.

Curry-style system F. In the present work, we deal with type isomorphisms for Curry-

style system F, i.e. system F where the terms grammar is simply the grammar of the

untyped λ-calculus. Although this system appears to be less relevant than Church-style

system F in proof-theory (a term does not correspond exactly to one proof), it is actually

more accurate when we consider programming languages. Indeed, in Church-style

system F, a term t of type ∀X.A will not have the type A[B/X]: only t{B} will be of this

type; whereas in Curry-style, a term t of type ∀X.A will have all the types A[B/X], which

is more the idea induced by the notion of polymorphism: the same function may be used

with different types. The typing rules and equalities of this language are presented on

figure 1, where X < Γ (resp. x < t) means that the type variable X (resp. the variable x)

does not appear freely in Γ (resp. in t).

Compared with this system, Church-style system F has a different grammar of terms:

t ::= x | λxA.t | (tt) | 〈t, t〉 | π1(t) | π2(t) | ΛX.t | t{A}

different typing rules for the quantification:

Γ ⊢ t : A (∀I)
Γ ⊢ ΛX.t : ∀X.A

if X < Γ
Γ ⊢ t : ∀X.A (∀E)

Γ ⊢ t{B} : A[B/X]

and two additional equalities:

(ΛX.t){A} = t[A/X] (β2)

ΛX.t{X} = t if X < t (η2)

As can be seen on the typing rules, a λ-term t is of type A if there exists a term t̃ of

Church-style system F such that t is obtained from t̃ by erasing all the type indications

(for example,ΛX.λx∀Y.YλyY.x{Y} becomes λxλy.x). In this case, we say that t is the erasure

of t̃.

The characterisation of type isomorphisms for Curry-style system F is not directly

reducible to corresponding question for the Church-style system F: indeed, types of the

form ∀X.A and A with X < A are not equivalent in the Church-style setting, but they are

in the Curry-style one (where the isomorphism is realised by the identity). We prove in

this paper that the distinction between Church-style and Curry-style type isomorphisms
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Grammars:

A ::= X | A→ A | ∀X.A | A ×A | ⊥

t ::= x | λx.t | (tt) | 〈t, t〉 | π1(t) | π2(t)

Typing rules:

(ax)
x1 : A1, . . . , xn : An ⊢ xi : Ai

Γ, x : A ⊢ t : B
(→ I)

Γ ⊢ λx.t : A→ B

Γ ⊢ t : A→ B Γ ⊢ u : A (→ E)
Γ ⊢ (tu) : B

Γ ⊢ t : A Γ ⊢ u : B
(×I)

Γ ⊢ 〈t,u〉 : A × B

Γ ⊢ t : A × B (×E1)
Γ ⊢ π1(t) : A

Γ ⊢ t : A × B (×E2)
Γ ⊢ π2(t) : B

Γ ⊢ t : A
(∀I)

Γ ⊢ t : ∀X.A
if X < Γ

Γ ⊢ t : ∀X.A
(∀E)

Γ ⊢ t : A[B/X]

Equalities:

(λx.t)u = t[u/x] (β)
λx.tx = t if x < t (η)
π1(〈u, v〉) = u (π1)

π2(〈u, v〉) = v (π2)

〈π1(u), π2(u)〉 = u (×)

Type isomorphism:

(t,u) s.t.



























⊢ t : A→ B

⊢ u : B→ A

λx.t(ux) = λx.u(tx) = λx.x

Fig. 1. Curry-style system F

can be resumed in one new and non-trivial equation. To express it, one first has to recall

the definition of positive and negative type variables in a formula†:

† All along this article we will identify the notions of type and formula (according to the Curry-Howard
correspondence).
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Definition 1. If A is a formula, its sets of positive variables PosA and negative variables

NegA are defined by:

— PosX = {X} , NegX = ∅

— Pos⊥ = Neg⊥ = ∅

— PosA×B = PosA ∪ PosB , NegA×B = NegA ∪NegB

— PosA→B = NegA ∪ PosB , NegA→B = PosA ∪NegB

— Pos∀X.A = PosA \ {X} , Neg∀X.A = NegA \ {X}

We also define FTV(A) = PosA ∪NegA.

The new equation is then the following:

∀X.A ≃ε A[∀Y.Y/X] if X < NegA

It is true in Curry-style but false (in general) in Church-style system F. Note that, although

the isomorphism is realised by the identity, the Church-style terms t : ∀X.A→ A[∀Y.Y/X]

and u : A[∀Y.Y/X]→ ∀X.A, from which we extract the identity by erasing explicit types,

are not trivial (they will be explicitly described in the proof of theorem 2 at the end of

the paper). This is a difference with Church-style system F, where type isomorphisms

were exactly the expected ones, even if proving that point was not an elementary task.

Type isomorphisms for Curry-style system F are finally characterised by the following

equational system:

A × B ≃ε B × A

A × (B × C) ≃ε (A × B) × C

A→ (B→ C) ≃ε (A × B)→ C

A→ (B × C) ≃ε (A→ B) × (A→ C)

∀X.∀Y.A ≃ε ∀Y.∀X.A

A→ ∀X.B ≃ε ∀X.(A→ B) if X < FTV(A)

∀X.(A × B) ≃ε ∀X.A × ∀X.B

∀X.A ≃ε A[∀Y.Y/X] if X < NegA

The purpose of this paper is to prove correctness and completeness of this characterisa-

tion by using a game model.

The model. Models of second order calculi do not come about easily due to impred-

icativity. Among the different possibilities, we choose models based on game semantics

because of their high degree of adequation with the syntax: indeed, game semantics

has been widely used to construct fully complete models for various calculi, such as

PCF (Abramsky et al., 2000; Hyland and Ong, 2000), µPCF (Laird, 1997), Idealized Al-

gol (Abramsky and McCusker, 1999), etc. This means that this semantics gives a very

faithful description of the behaviour of the syntax modulo reduction rules in the system.

And this is precisely what we need to deal semantically with type isomorphisms: a

model which is so precise that it contains no more isomorphisms than the syntax.

The present paper introduces a game model for Curry-style system F. This model

was largely inspired by two preceding game semantics works: the PhD thesis of Juliusz
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Chroboczek (Chroboczek, 2003), which presents among others a game semantics for

an untyped calculus that we reuse in this paper; and the game semantics model for

generic polymorphism by Samson Abramsky and Radha Jagadeesan (Abramsky and

Jagadeesan, 2003), from which we will extract many ideas in our context. Other game

semantics models had an influence on our work: Dominic Hughes gave the first game

models of Church-style system F (Hughes, 2000) and introduced the notion of hyperforests

that we reuse here; Andrzej Murawski and Luke Ong presented a simple and efficient

model for dealing with affine polymorphism (Murawski and Ong, 2001), and their

presentation of moves inspired ours.

It shall be noticed that the design of our Curry-style game model is actually very

connected to the concepts present in the syntax: the notion of erasure we introduce is of

course reminiscent of the erasure of types in a Church-like term to obtain a Curry-like

term. This is no surprise as we need a model describing very precisely the syntax (that

is why, in particular, one cannot be satisfied by an interpretation of the quantification as

an intersection or a greatest lower bound). The specificities of (HO-)game semantics, as

for example the arborescent structure that interprets types, are however decisive for our

demonstration.

Finally, the model we present in this paper is not a model for every equalities of

Curry-style system F: the η-rule and the subjective pairing are not preserved by the

interpretation. However, if they are oriented as reduction rules, they are interpreted by

an inclusion in the model. One part of the job is to prove that this modelisation is strong

enough to capture type isomorphisms.

2. Prolegomena on game semantics

Game semantics is the main technical tool used in this work. But as we will focus later

on very specific details related with the introduction of polymorphism, we present in

this section the basics on HO-style game semantics and its key ingredients‡:

— arenas which interpret types geometrically

— strategies which interpret terms dynamically

— the property of innocence, a constraint on strategies which connects them stronger

with syntax

— the notion of interaction which determines the way that two strategies can combine

to generate a new one.

The definitions given below correspond to the standard presentation of games as a

modelisation of the language PCF or, more modestly, of the simply typed λ-calculus.

As most of the notions will be redefined later in a polymorphic setting, we will refer to

these games as HO-games, and use the terminology HO-arenas, HO-strategies, etc.

‡ For a more complete description of these games, see (Hyland and Ong, 2000) or (Harmer, 1999).
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2.1. HO-Arenas

Game semantics is based on a conflict between two players, Player P and Opponent

O. Intuitively, the Player is the program in execution, whereas the Opponent is its

environment (e.g. the value of its parameters). The two players interact by playing

moves in an arena. More formally, if we note X the set of type variables:

Definition 2 (HO-arena). An HO-arena A = (EA, λ, ⊢,D) is a set EA of moves together

with a function of polarity λ : EA → {O,P}, a partial function of decoration D : EA ⇀ X
and a relation of justification ⊢ ⊆ EA + (EA × EA), with the following properties:

— there is no cycle x ⊢ x1 ⊢ · · · ⊢ xn ⊢ x

— if ⊢ x then λ(x) = O

— if x ⊢ y then λ(x) , λ(y).

The polarity indicates by which player a move can be played. The relation of justifica-

tion says the following: if ⊢ m then m can be played by its player (necessarily O) without

restriction; if m ⊢ n then n can be played only if m has been played earlier (necessarily

by the other player). The decoration is not standard in HO-style games: it corresponds

to the indication of a type variable; for example, in the arena corresponding to X → Y

there will be two moves, one with the decoration X and the other with the decoration Y.

On a given HO-arena, we can define a set of initial moves IA ⊆ EA by:

IA = {x ∈ EA | ⊢ x}

and a partial order < by:

x < y⇔ ∃z1, . . . , zn, x ⊢ z1 ⊢ · · · ⊢ zn ⊢ y

We can recover the relation of justification if we know only I and <:

— ⊢ x iff x ∈ I

— x ⊢ y iff x < y and x ≤ z ≤ y⇒ (z = x ∨ z = y).

2.2. Constructions on arenas

In what follows, we note E+ F the disjoint union between two sets E and F. If f : E⇀ G

and g : F⇀ G are two partial functions then [ f , g] : E + F⇀ G is defined by:

[ f , g](x) =















f (x) if x ∈ E and f (x) is defined

g(x) if x ∈ F and g(x) is defined

The aromic HO-arenas are:

— ⊤ = (∅, ∅, ∅, ∅)
— ⊥ = ({•}, • 7→ O, {•}, ∅)
— X = ({•}, • 7→ O, {•}, • 7→ X).

Given two HO-arenas A = (EA, λA, ⊢A,DA) and B = (EB, λB, ⊢B,DB),we define the

product HO-arena A × B = (EA×B, λA×B, ⊢A×B,DA×B) and the arrow HO-arena A → B =

(EA→B, λA→B, ⊢A→B,DA→B)) by:
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— EA×B = EA + EB EA→B = EA + EB

— λA×B = [λA, λB] λA→B = [λA, λB]

— ⊢A×B = ⊢A + ⊢B ⊢A→B = (⊢A\IA) + ⊢B + (IB × IA)

— DA×B = [DA,DB] DA→B = [DA,DB]

where λ(x) =















O if λ(x) = P

P if λ(x) = O

2.3. Plays and strategies

Definition 3 (HO-justified sequence, HO-play). An HO-justified sequence on an HO-

arena A = (EA, λ, ⊢,D) is given by a sequence s = m1 . . .mn of elements of EA and a partial

function f : {1, . . . , n}⇀ {1, . . . , n} such that: if f (i) is not defined then ⊢ mi, and if f (i) = j

then j < i and m j ⊢ mi (we then say that mi justifies m j, or that there is a pointer from m j

to mi).

An HO-play is a HO-justified sequence s = x1 . . . xn such that: for every 1 ≤ i ≤ n,

— if λ(xi) = P then λ(xi+1) = O

— if λ(xi) = O then λ(xi+1) = P and D(xi+1) = D(xi) (which also means that D(xi+1) is

undefined if D(xi) is undefined).

We note PHO
A

(resp. EHO
A

) the set of HO-plays (resp. the set of even-length HO-plays)

on A.

Let s and t be two HO-justified sequences on A, we write t � s if t is a prefix of s.

Definition 4 (HO-strategy). An HO-strategyσ on an HO-arena A = (EA, λ, ⊢,D) is a non-

empty set of even-length HO-plays on A, closed by even-length prefix and deterministic:

if sm and sn are two HO-plays of σ then sm = sn.

If σ is an HO-strategy on A, we note σ : A.

An HO-strategy is simply the description of a behaviour of P: given a certain history

and a move of O, it gives a unique move played by P as a response. HO-style game

model interpret terms as strategies, thus confirming the above intuition of identifying P

with the program or, more precisely, with the behaviour of P.

Buy we do not have at this point a strict identification between terms of the syntax

and HO-strategies: there is still too much freedom in the behavior of P. The first thing

to add to constraint it is a property of innocence:

Definition 5 (view, innocence). Let s be an HO-play, its view psq is defined by:

— pǫq = ǫ
— psmq = psqm if λ(m) = P

— psmq = m if ⊢ m

— psmtnq = psqmn if λ(m) = O and m justifies n.

An HO-strategy σ : A is called innocent if, for any HO-play sm of σ, the move which

justifies m is in psq, and if we have: for any smn ∈ σ, t ∈ σ, if tm is a play on A and

psmq = ptmq then tmn ∈ σ.
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According to that definition, what really matters in an innocent HO-strategy is its set of

views. However, considering all the HO-plays of an HO-strategy will become necessary

when dealing with composition.

HO-trategies that correspond to λ-terms are winning HO-strategies:

Definition 6 (winning HO-strategy). An HO-strategy σ on the HO-arena A = (EA, λ, ⊢
,D) is called winning if the following conditions are satisfied:

— σ is innocent

— the set of views of σ is finite

— σ is total on A: for every HO-play s ∈ σ, if sm ∈ PHO
A

then there exists a move n ∈ EA

such that smn ∈ σ.

It can then be proved (cf. (Hyland and Ong, 2000)) that, if an HO-arena A comes from

a type T, any winning strategy σ on A is the interpretation of a simply typed λ-term t

of type T. A similar result of completeness can be given for games interpreting Church-

style system F (see (Hughes, 2000)), but in the case of the present paper completeness is

not a necessary result.

2.4. Interaction

The central mechanism of game semantics is the notion of interaction: two HO-strategies

σ : A→ B and τ : B→ C can interact to give rise to a new HO-strategy σ; τ : A→ C, the

composition of σ and τ.
The intuitive idea is the following: as the polarity on B is reversed in B → C, the

HO-strategy τ will play the role of the Opponent on this part, whereas σ will play the

role of Player: this generates a dialogue between the two players on the common part B.

Then, to obtain a strategy on A→ C, it suffices to keep record of the dialogue on A and

C, and to forget the part of the dialogue played in B.

This dialogue interaction is the reason why we say that game semantics offers a

dynamical approach to cut-elimination; in fact, this dynamical process is a feature from

which we will take great advantage in the present work.

To express these ideas more formally, we begin with the restriction of an HO-justified

sequence to a part of its HO-arena:

Definition 7 (restriction). Let s be an HO-justified sequence on an HO-arena A =

(EA, λA, ⊢A,DA), and let B = (EB, λB, ⊢B,DB) an HO-arena such that EB ⊆ EA, ≤B ⊆ ≤A and

λA (resp. DA) coincides with λB (resp. DB) on EB. Then the restriction of s to B, denoted

s↾B, is the HO-justified subsequence of s obtained by keeping only the moves of EB, with

the associated pointers as long as we stay in EB.

Suppose now that there is another HO-arena C = (EC, λC, ⊢C,DC) such that EC ⊆ EA,

≤C ⊆ ≤C and λA (resp. DA) coincides with λC (resp. DC) on EC. Then the restriction of

s to B,C, denoted s↾B,C, is the HO-justified subsequence of s obtained by keeping only

the moves of EB or EC, with the associated pointers as long as we stay in EB or in EC,

and additionnal pointers from moves m1 of EB to moves m2 of EC if there exists a move

m3 ∈ EA\(EB ∪ EC) such that m3 justifies m1 and m2 justifies m3.
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We can now define composition:

Definition 8 (HO-interaction sequence, composition). An HO-interaction sequence

between A, B and C is an HO-justified sequence s on (A → B) → C such that s↾A,B,

s↾B,C and s↾A,C are HO-plays. The set of HO-interaction sequences between A, B and C

is denoted IntHO(A,B,C).

Let σ and τ be two strategies. We call composition of σ and τ the set

σ; τ = {u↾A,C | u ∈ IntHO(A,B,C), u↾B,C ∈ τ and u↾A,B ∈ σ}

It can then be proved (cf. (Hyland and Ong, 2000; Harmer, 1999)) that σ; τ is a strategy.

2.5. Category of HO-games

To conclude this introductory section on game semantics, we present how to buil a

cartesian closed category of HO-games. The interpretation of the syntax is actually

given most of the time through this category.

The identity HO-strategy on the HO-arena A is

idHO
A = {s ∈ EHO

A1→A2
| ∀t ∈ EHO

A1→A2
, t � s⇒ t↾A1

= t↾A2
}

where A1 (resp. A2) is the left (resp. right) copy of A in the disjoint union A + A.

The category of (innocent) HO-games is defined as follows:

— objects are the HO-arenas

— a morhism between A and B is an innocent HO-strategy on A→ B

— the identity on A is idHO
A

— the composition of σ : A→ B and τ : B→ C is σ; τ : A→ C.

This category is equipped with the following morphisms:

— trivial strategy:

⋄HO
= {ǫ} : A→ ⊤

— projections:

πHO
A = {s ∈ EHO

A×B1→B2
| ∀t ∈ EHO

A×B1→B2
, t � s⇒ t↾B1

= t↾B2
} : A × B→ B

πHO
B = {s ∈ EHO

A1×B→A2
| ∀t ∈ EHO

A1×B→A2
, t � s⇒ t↾A1

= t↾A2
} : A × B→ A

— pairing: if σ : A→ B and τ : A→ C,

〈σ, τ〉 = {s ∈ EHO
A→(B×C) | s↾A→B ∈ σ and s↾A→C ∈ τ} : A→ (B × C)

— evaluation :

evalHO
= {s ∈ EHO

(A1→B1)×A2→B2
| ∀t ∈ EHO

(A→B)×A→B
,

t � s⇒ t↾A1
= t↾A2

∧t↾B1
= t↾B2

} : (A→ B) × A→ B

— abstraction : if σ : A × B → C, Λ(σ) is the HO-strategy on A → (B → C) whose

HO-plays are the same as those of σ, but seen as HO-plays on A→ (B→ C)
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These morphisms make the category cartesian closed, as proved in (Harmer, 1999).

Note that if we forget the property of innocence, we loose the cartesian closed structure.

So, the somewhat sophisticated definitions of HO-style game semantics describe sim-

ple and efficient geometrical intuitions to modelise the syntax. This is the reason why

games are used in the present work as a semantic tool: the strong intuitions they give

can enlight even difficult syntactic questions.

3. General definitions

In this section we give general constructions that will apply on the different grammars

we use in the model. These constructions are derived from usual HO-games notions

given above.

3.1. Moves

We consider the set of type variables X, Y, . . . to be in bijection withN\{0}, and we will

further write this set X = {X j | j > 0}.

All along this article, we define several grammars of the form:

µ ::= ↑µ | ↓µ | αiµ | j (i ∈ I, j ∈N)

Let us writeM for the set of words (often called moves) defined by this grammar.

Intuitively, the token ↑ (resp. ↓) corresponds to the right side (resp. the left side) of

an arrow type, the αi’s are related to additional (covariant) connectors, the constants

j ∈ N\{0} correspond to free type variables X j and the constant 0 corresponds either to

bound type variables or to ⊥.

On such a grammar, we define automatically a function λ of polarity, with values in

{O,P}:

— λ( j) = O

— λ(↑µ) = λ(αiµ) = λ(µ)
— λ(↓µ) = λ(µ)

where O = P and P = O.

We also introduce an enabling relation ⊢ ⊆ M∪ (M×M):

— ⊢ j
— if ⊢ µ then ⊢ αiµ, and ⊢ ↑µ
— if ⊢ µ and ⊢ µ′ then ↑µ ⊢ ↓µ′

— if µ ⊢ µ′ then αiµ ⊢ αiµ′, ↑µ ⊢ ↑µ′ and ↓µ ⊢ ↓µ′.

which induces a partial order ≤ for this grammar by reflexive and transitive closure. If

⊢ µ we say that µ is an initial move (in which case λ(µ) = O).

3.2. Substitution

As we want to deal with polymorphism, we need some operations acting directly on the

leafs j:
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— a function ♯ of leaf extracting:

– ♯( j) = j

– ♯(↑µ) = ♯(↓µ) = ♯(αiµ) = ♯(µ)

— an operation of substitution µ[µ′]:

– j[µ′] = µ′

– ↑µ[µ′] = ↑(µ[µ′]), ↓µ[µ′] = ↓(µ[µ′]) and αiµ[µ′] = αi(µ[µ′])

We say that µ1 is a prefix of µ2 if there exists µ′ ∈ M such that µ2 = µ1[µ′]. This is

denoted µ1 ⊑
p µ2.

3.3. Plays and strategies

Definition 9 (justified sequence, play). A justified sequence on a given grammar is a

sequence s = µ1 . . . µn of moves, together with a partial function f : {1, . . . , n}⇀ {1, . . . , n}
such that: if f (i) is not defined then ⊢ µi, and if f (i) = j then j < i and µ j ⊢ µi: in this case

we say that µ j justifies µi, or that there is a pointer from µ j to µi.

A play on a grammar is a justified sequence s = µ1 . . . µn on this grammar such that,

for every 1 ≤ i ≤ n − 1:

— if λ(µi) = P then λ(µi+1) = O

— if λ(µi) = O then λ(µi+1) = P and ♯(µi) = ♯(µi+1).

We note E the set of plays of even length. If s and t are two plays, we note t � s if t is

a prefix of s.

The definition of a play implies that if sµν is an even-length play then ♯(µ) = ♯(ν). This

will be a very significant property in our model.

Definition 10 (strategy). A strategy σ on a given grammar is a non-empty set of even-

length plays, which is closed under even-length prefix and deterministic: if sµ and sν
are two plays of σ then sµ = sν.

Definition 11 (view, innocence). Let s be a play on a grammar, we define its view psq

by:

— pεq = ε
— psµq = psqµ if λ(µ) = P

— psµq = µ if ⊢ µ
— psµtνq = psqµν if λ(ν) = O and µ justifies ν

A strategy σ is called innocent if, for every play sν of σ, the justifier of ν is in psq, and

if we have: if sµν ∈ σ, t ∈ σ, tµ is a play and psµq = ptµq then tµν ∈ σ.

Definition 12 (bi-view). A bi-view on a given grammar is a justified sequence s =

µ1 . . . µn (with n ≥ 1) such that any move is justified by its predecessor. The set of

bi-views is denoted BV.
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3.4. Composition

Composition is usually defined between strategies on arenas of the form A → B and

B→ C. We are going to define it in a context where arenas do not explicitly exist, but are

however represented by the tokens ↑ and ↓.

Definition 13 (shape). Let ζ ∈ ({↑, ↓}∪{αi}i∈I)
∗, a move µ is said to be of shape ζ if ζ0 ⊑p µ.

Let Σ be a finite set of elements ζ j ∈ ({↑, ↓} ∪ {αi}i∈I)
∗. A justified sequence is said to be

of shape Σ if each of its moves is of shape ζ j for some j. A strategy is of shape Σ if each

of its plays is of shape Σ.

In the case where Σ = {↑, ↓}, we say that the justified sequence (or the strategy) is of

arrow shape.

Consider a justified sequence s = µ1 . . . µn, we define the sequence s↾ζ as the restriction

of s to the moves of shape ζwhere the prefix ζ has been erased, and the pointers are given

as follows: if µi = ζµ′i is justified by µ j = ζµ′j in s, then the corresponding occurrence of

µ′
i

is justified by µ′
j

Suppose ζ, ξ ∈ {↑, ↓, r, l}∗, and consider the restriction s′ of s to the moves of shape ζ,
and to the moves of shape ξ hereditarily justified by a move of shape ζ. The justified

sequence s↾ζ,ξ is defined as the sequence s′where each prefix ζ (resp.ξ) has been replaced

by ↑ (resp. ↓), and where pointers are defined as follows:

— if µi = ζµ′i (resp. µi = ξµ′i ) is justified by µ j = ζµ′j (resp. µ j = ξµ′j) in s, then the

corresponding occurrence of ↑µ′
i

(resp. ↓µ′
i
) in s↾ζ,ξ is justified by ↑µ′

j
(resp. ↓µ′

j
)

— if µi = ξµ′i is hereditarily justified by µ j = ζµ′j in s with ⊢ µ′
i

and ⊢ µ′
j

(µ′
j

is then

necessarily unique), then the corresponding occurrence of ↓µ′
i

is justified by the

corresponding occurrence of ↑µ′
j
.

Definition 14 (interacting sequence, composition). An interacting sequence s = µ1 . . . µn

is a justified sequence of shape {↑, ↓↑, ↓↓} such that s↾↑,↓↑, s↾↓↑,↓↓ and s↾↑,↓↓ are plays. The

set of interacting sequences is denoted Int.

Suppose we have two strategies σ and τ. We call composition of σ and τ the set of

plays

σ; τ = {u↾↑,↓↓| u ∈ Int, u↾↑,↓↑∈ τ and u↾↓↑,↓↓∈ σ}

σ; τ is a strategy: this can be proven like in the standard HO-style game model.

Moreover if σ and τ are innocent then σ; τ is innocent.

Definition 15 (totality on a shape). Let σ be a strategy and ζ ∈ ({↑, ↓} ∪ {αi}i∈I)
∗. We say

that σ is total on the shape ζ if, for every play s ∈ σ of shape ζ, for every move µ such

that sµ is a play of shape ζ, there exists a move ν of shape ζ such that sµν ∈ σ.

3.5. Presentation of the Curry-style model

Our model is defined through three grammars:

— X is the grammar of untyped moves which generate the untyped model to interpret

untyped lambda-terms
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General definitions (pp. 10-12)

Grammar µ ::= ↑µ | ↓µ | αiµ | j

♯(µ) : leaf extraction (∈N)

λ(µ) : polarity (∈ {O,P})
⊢ : enabling relation

µ[µ′] : substitution

Justified sequence, play, strategy

Arenas (pp. 18-21)

Interpretation of types

Grammar a ::= ↑a | ↓a | ra | la | ⋆a | j

⇒ occurrencesA

OA : set of occurrences

LA : function of linkage

pauxA : auxiliary polarity

Hyperforests (pp. 26-29)

Arborescent representation of types

HA = (FA,RA,DA)

refA : reference

frA : friends

Untyped model (pp. 14-18)

Interpretation of λ-terms

Grammar x ::= ↑x | ↓x | rx | lx | j

⇒ untyped moves X

Untyped strategy σ
Hyperuniformity : untyped copycat

Typed model (pp. 21-25)

Interpretation of Church-style terms

Grammar m ::= ↑m | ↓m | rm | lm | ⋆Bm | j

⇒ typed movesM

Typed strategy σ̃ :: A

Symbolic strategy σ̄ : O plays X j

Uniformity : typed copycat

Level of B : move at which ⋆B is played first

E

realisation

erase = E ◦ A

A
A 7→ MA

A 7→ HA

or

Curry-style model (pp. 25-26)

σ : A if

• σ hyperuniform

• ∃ σ̃ :: A uniform realisation of σ

Fig. 2. Summary of the model
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— A is the grammar of occurrences which are used for the interpretation of formulas

— M is the grammar of typed moves which generate an interpretation of the terms of

Church-style system F.

The interpretation of Curry-style system F in the model will be as follows:

— a type A will be interpreted as an arena (also denoted A), i.e. a specific structure based

on the grammarA

— a term t of type A will be interpreted as a strategy σ on the grammar X, with the

condition that this strategy has a realisation σ̃, defined on the grammar M and

played on the arena A (this will be denoted σ̃ :: A)

— two additional properties are required: hyperuniformity which applies on σ, and

uniformity which applies on σ̃.

We have summarised on figure 2 the different parts that compose the model, with the

specific operations for each part that will be defined later. This diagram is intended to

serve as an index to locate in which context each of these operations is defined.

In what follows, we first define the untyped model to interpret untyped lambda-

terms, then we define arenas and typed strategies on arenas, and finally we introduce

the notion of erasure and set up our mmodelisation of Curry-style system F. Next we

prove, using this model, our result on type isomorphisms.

4. The untyped model

In this section we give a semantics for the untyped λ-calculus with binary products,

i.e. for the calculus of figure 1 restricted to the language of terms with their reduction

rules. This model is largely inspired by the work of Juliusz Chroboczek in his PhD

thesis (Chroboczek, 2003).

Note however that we do not obtain a model in the usual sense: the equalities of

the syntax are not equalities in the interpretation. But we will show that, if we give an

orientation to the rules of the syntax, these oriented rules will correspond to an inclusion

in the interpretation: we can say then that we have a model of the reduction. We will

however make use of the word model for simplicity, keeping this restriction in mind.

4.1. A confluent calculus

On the Curry-style terms, we consider the rewriting system։ defined by the following

rules:

(λx.t)u ։β t[u/x]

λx.tx ։η t si x < t

〈π1(t), π2(t)〉 ։× t

π1(〈t, u〉) ։π1
t

π2(〈t, u〉) ։π2
u

We know from (Klop, 1978) that this system is not confluent for the terms of λ-calculus

with products. But we will show that, if we restrict ourselves to well-typed terms of the

Curry-style system F, then it is confluent.
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We first check that, in the Curry-style system F, if Γ ⊢ 〈t, u〉 : A then either A = B × C

or A = ∀X.B. Similarly, if Γ ⊢ λx.t : A then either A = B → C or A = ∀X.B. This allows

to conclude that terms of the form π1(λx.t), π2(λx.t) or (〈t, u〉)v are not well-typed in the

Curry-style system F.

The system։ is locally confluent: given the preceding remark, the only true critical

pairs are created by the following terms:

— (λx.tx)u where x < t

— λx.(λy.t)x where x < t

— π1(〈π1(t), π2(t)〉)

— π2(〈π1(t), π2(t)〉)

and they can be closed trivially.

Lemma 1. The rewriting system։ terminates on well-typed Curry-style terms.

Proof. We note։βπ the union of the rules։β,։π1
and։π2

, and։η× the union of the

rules։η and։×. We want to show that

։∗ =։∗βπ։
∗
η×

It suffices to check that any rule ։η or ։× used before a rule ։β, ։π1
ou ։π2

can be delayed after one or several rules of this kind, or even forgotten. Indeed,

π1(〈π1(t), π2(t)〉)։× π1(t) can be replaced byπ1(〈π1(t), π2(t)〉)։π1
π1(t), (λx.(λy.t)x)u։η

(λy.t)u ։β t[u/x] with x < t can be replaced by (λx.(λy.t)x)u ։β (λy.t)u ։β t[u/x],

etc. The only cases that should be a problem are when we have terms of the form

〈π1(λx.t), π1(λx.t)〉u or π1(λx.〈t, u〉x), but as seen above such terms are not well-typed.

The rewriting system։η× trivially terminates (the size of terms decreases). Concern-

ing։βπ, its termination is a well-known result (cf. (Girard, 1972)).

Local confluence and termination allow to conclude :

Corollary 1. The rewriting system։ applied to Curry-style system F is confluent.

This result is essential for our work. Indeed, as we previously said, the interpretation

defined futher will be a model for the reduction, in the sense that any reduction in

the syntax will be interpreted by an inclusion. But an equality in the syntax will not

necessarily correspond to an equality in the model. When talking about isomorphisms,

we focus on an equality between two terms v = λx.t(ux) and w = λx.x. Fortunately, w is

a normal form for the system։. Then, confluence allows us to say that v can be reduced

into w, and its interpretation is included in the interpretation of w.

4.2. Untyped moves

The grammar of untyped moves is the following:

x ::= ↑x | ↓x | rx | lx | j ( j ∈N)

The set of untyped moves is denoted X.
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The justified sequences, plays and strategies induced by this grammar will be called

untyped justified sequences, plays and strategies.

4.3. Basic strategies

We define the following strategies:

— identity:

id = {s ∈ E | s of arrow shape and ∀t ∈ E, t � s⇒ t↾↑= t↾↓}

— projections:

πr = {s ∈ E | s of shape {↑, ↓r, ↓l} and ∀t ∈ E, t � s⇒ t↾↑= t↾↓r}

πl = {s ∈ E | s of shape {↑, ↓r, ↓l} and ∀t ∈ E, t � s⇒ t↾↑= t↾↓l}

— evaluation:

eval = {s ∈ E | s of shape {↑, ↓l↑, ↓l↓, ↓r} and ∀t ∈ E, t � s⇒ t↾↑= t↾↓l↑ ∧t↾↓r= t↾↓l↓}

We also define three basic operations on strategies:

— pairing without context: if σ and τ are two strategies,

〈σ, τ〉a = {s ∈ E | s of shape {r, l} and s↾l ∈ σ and s↾r ∈ τ}

— pairing with context: if σ and τ are two strategies of arrow shape,

〈σ, τ〉b = {s ∈ E | s of shape {↑r, ↑l, ↓} and s↾↑l,↓ ∈ σ and s↾↑r,↓ ∈ τ}

— abstraction: if σ is a strategy of shape {↑, ↓r, ↓l},Λ(σ) is the strategy of shape {↑↑, ↑↓, ↓}
which is deduced from σ by replacing each move ↑x by ↑↑x, each move ↓rx by ↑↓x

and each move ↓lx by ↓x.

4.4. Hyperuniformity

We have enough material to define our untyped model. However, our use of untyped

strategies in the Curry-style model forces us to impose new requirements: for example,

consider the formula X1 → X1. It would be reasonable to think that the innocent strategy

σwhose set of views is {ε, ↑1 · ↓1} has this type. However, because we deal with a Curry-

style model, any strategy of type X1 → X1 should also have the type ∀X1.X1 → X1, and

thus A→ A for any A, and should be able to do a copycat between the left and the right

side of the arrow.

This is the meaning of the notion of hyperuniformity defined below.

Definition 16 (copycat extension of an untyped play). Let s = x1 . . . xn be an untyped

play, xi an O-move of s and v = y1 . . . yp ∈ BV. Suppose s = s1xixi+1s2. The copycat

extension of s at position i with parameter v is the untyped play s′ = ccs(i, v), defined by

:

— s′ = s1xi[y1]xi+1[y1]s2 if p = 1
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— s′ = s1xi[y1]xi+1[y1]xi+1[y2]xi[y2] . . .xi+1[yp]xi[yp] if p even

— s′ = s1xi[y1]xi+1[y1]xi+1[y2]xi[y2] . . .xi[yp]xi+1[yp] if p > 1 and p odd

Definition 17 (hyperuniform strategy). An untyped strategy σ is called hyperuniform

if it is innocent and if, for any play s ∈ σ, any copycat extension of s is in σ.

Lemma 2. The identity strategy, the projections and the evaluation strategy are hyper-

uniform. If σ and τ are hyperuniform then 〈σ, τ〉 and Λ(σ) are hyperuniform.

The preceding lemma is straightforward. The interesting case is composition:

Lemma 3. If σ and τ are hyperuniform then σ; τ is hyperuniform.

Proof. Let us consider a play s = x1 . . . xp ∈ σ; τ, an O-move xi of s and a bi-view

v = y1 . . . yq. We have to prove that s′ = ccs(i, v) belongs to σ; τ.
There exists a justified sequence u such that u↾↑,↓↓= s, u↾↓↑,↓↓∈ σ and u↾↑,↓↑∈ τ. If

u = t1xib1 . . . bqxi+1t2, we build a new justified sequence U depending on the value of p :

— if p = 1, U = t1xi[y1]b1[y1] . . . bq[y1]xi+1[y1]t2

— if p even,

U = t1xi[y1]b1[y1] . . . bq[y1]xi+1[y1]xi+1[y2]bq[y2] . . . b1[y2]xi[y2]

. . . . . . xi+1[yp]bq[yp] . . . b1[yp]xi[yp]

— if p odd and p > 1,

U = t1xi[y1]b1[y1] . . . bq[y1]xi+1[y1]xi+1[y2]bq[y2] . . . b1[y2]xi[y2]

. . . . . . xi[yp]b1[yp] . . . bq[yp]xi+1[yp]

We have U↾↓↑,↓↓∈ σ and U↾↑,↓↑∈ τ by hyperuniformity of σ and τ. So, U↾↑,↓↓= s′ ∈ σ; τ.

4.5. Interpretation of the untyped λ-calculus with binary products

We now present the interpretation of the untyped calculus. Instead of directly interpret-

ing terms, we interpret sequents of the form Γ ⊢ t, where t is a term and Γ is simply a list

of variables that includes the free variables occurring in t.

The interpretation is as follows:

~Γ, x ⊢ x� = πr

~Γ, y ⊢ x� = πl; ~Γ ⊢ x�

~Γ ⊢ λx.t� = Λ(~Γ, x ⊢ t�)

~Γ ⊢ (tu)� = 〈~Γ ⊢ t�, ~Γ ⊢ u�〉; eval

~Γ ⊢ 〈t, u〉� = 〈~Γ ⊢ t�, ~Γ ⊢ u�

~Γ ⊢ π1(t)� = ~Γ ⊢ t�;πl

~Γ ⊢ π2(t)� = ~Γ ⊢ t�;πr

From lemmas 2 and 3 we derive:
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Lemma 4. Let t be a term whose free variables are contained in the list Γ, then ~Γ ⊢ t� is

a hyperuniform strategy.

What we have obtained up to now is not a model of system F. However we have a

characterisation of the reduction in our context:

Proposition 1. Let t and u be two terms whose free variables are contained in the list Γ.

If t։ u then ~Γ ⊢ t� ⊆ ~Γ ⊢ u�.

Proof. The relation σ ⊆ τ is reflexive and transitive, and it is a congruence for every

construction used in the interpretation: if σ ⊆ τ then

— Λ(σ) ⊆ Λ(τ)
— 〈σ, ρ〉x ⊆ 〈τ, ρ〉 for any untyped strategy ρ
— σ; ρ ⊆ τ; ρ and ρ; σ ⊆ ρ; τ for any strategy ρ.

If t։β u then ~Γ ⊢ t� = ~Γ ⊢ u�: indeed, in the cartesian closed category of HO-games

the partial orderX is a reflexive object, which means that the β-equality is an equality in

the interpretation (see (Barendregt, 1984)).

If x < t then ~Γ ⊢ λx.tx� is the restriction of ~Γ ⊢ t� to the plays of shape {↑↑, ↑↓, ↓}.

If t = 〈π1(u), π2(u)〉 then ~Γ ⊢ t� is the restriction of ~Γ ⊢ u� to the plays of shape

{↑r, ↑l, ↓}.

Finally, if t։π1
u or t։π2

u then ~Γ ⊢ t� = ~Γ ⊢ u�.

Corollary 2. Let us consider the strategy

α = {s ∈ E | s of shape {↑r, ↓} and ∀t ∈ E, t � s⇒ t↾↑r= t↾↓}

If t = λx.t0 and u = λx.u0 are two closed terms such that λx.t(ux) = λx.x then α; ~x ⊢

u0�;α; ~x ⊢ t0� ⊆ id.

Proof. We note σ = α; ~x ⊢ u0�;α; ~x ⊢ t0�. It is easy to see (by induction on t0) that

α; ~⊢ λx.t(ux)� = σ. Moreover, and λx.x is a normal form for the reduction system։, so

λx.t(ux)։ λx.x by confluence of։. Thus, as α; ~⊢ λx.x� = id, we have σ ⊆ id.

5. Arenas

5.1. Interpretation of a formula

In this section we introduce the notion of arena, the structure that will interpret Curry-

style types. This structure is very similar to the one presented in (Abramsky and Ja-

gadeesan, 2003).

We define the following grammar of occurrences:

a ::= ↑a | ↓a | ra | la | ⋆a | j ( j ∈N)

The set of all occurrences is denotedA.

We define a translation E fromA to X: E(a) is obtained by erasing all the tokens ⋆ in

a. Inductively:
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— E(i) = i

— E(⋆a) = E(a)

— E(αa) = αE(a) if α ∈ {↑, ↓, r, l}.

The syntactic tree of a formula A is a tree with nodes labelled by type connectors

(→,×,∀) or integers, edges labelled by the tokens ↑, ↓, r, l, ⋆, and possibly some arrows

linking a leaf to a node. It is defined as follows:

— T⊥ is reduced to a leaf 0

— TXi
is reduced to a leaf i

— TA→B consists in a root→with the two trees TA and TB as sons; the edge between→

and TA (resp. TB) is labelled ↓ (resp. ↑)

— TA×B consists in a root × with the two trees TA and TB as sons; the edge between ×

and TA (resp. TB) is labelled l (resp. r)

— T∀Xi.A consists in a root ∀with the tree T as unique son, where T is deduced from TA

by linking each of its leafs labelled by i to its root, and relabelling these leafs by 0;

the edge between ∀ and T is labelled ⋆.

A maximal branch in a syntactic tree is a path from the root to a leaf; it will be described

by the sequence of labels of its edges, with the index of the leaf at the end of the sequence.

Such a maximal branch is then an occurrence.

The set OA of occurrences of a formula A is the set of maximal branches of TA. We

define a function of linkage LA : OA → A ∪ {†} as follows: if the leaf reached by the

maximal branch a is linked to a node c, then LA(a) is the sequence of labels of the edges

we cross to reach c starting from the root, with a 0 at the end; otherwise, LA(a) = †.

The structure (OA,LA) will be called an arena. It will also be denoted A, with no risk

of confusion.

Example: The type A = ∀X1.(X1 → ((∀X2.X2)→ (X3 × ⊥))) has the following syntactic

tree:

∀

⋆

��

→
↓

~~}}
}}

}}
}} ↑

!!
CC

CC
CC

CC

0 →
↓

~~}}
}}

}}
}} ↑

  
@@

@@
@@

@@

∀

⋆

��

×

l

~~~~
~~

~~
~~ r

��
>>

>>
>>

>>

0 3 0
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Its set of occurrences is then:

OA = {⋆↓0 , ⋆↑↓ ⋆ 0 , ⋆↑↑l3 , ⋆↑↑r0}

And its function of linkage is given by:



































LA(⋆↓0) = ⋆0

LA(⋆↑↓ ⋆ 0) = ⋆↑↓ ⋆ 0

LA(⋆↑↑l3) = †

LA(⋆↑↑r0) = †

Definition 18 (arena). An arena A is defined by a finite set OA ⊆ A and a function of

linkageLA : OA → A ∪ {†} satisfying the following conditions:

— OA is inhabited: ∃a ∈ OA, ⊢ a

— OA is non-ambiguous: ∀a, a′ ∈ OA, if E(a) ⊑p E(a′) then a = a′

— for every a ∈ OA, either LA(a) = † or LA(a) = a′[⋆0] ⊑p a for some a′ ∈ A

— for every a ∈ OA, if ♯(a) , 0 then LA(a) = †

The set of arenas is denoted G.

Note thatOA shall not be empty: this corresponds to the fact that the grammar of types

does not contain ⊤.

Definition 19 (auxiliary polarity). Given an arena A, we define its auxiliary polarity as

a partial function pauxA : OA ⇀ {O,P} by: pauxA(c) = λ(LA(c)) if LA(c) , †, otherwise it

is undefined.

We also define FTV(A) = {Xi ∈N | ∃a ∈ OA, ♯(a) = i}.

5.2. Alternative, inductive interpretation of a formula

We define the following constructions on arenas:

(atoms) ⊥ = ({0}, 0 7→ †) Xi = ({i}, i 7→ †) for i > 0.

(product) if A,B ∈ G, we define A × B by:

— OA×B = {la | a ∈ OA} ∪ {rb | b ∈ OB}

— LA×B(la) =















† if LA(a) = †

lLA(a) otherwise
LA×B(rb) =















† if LB(b) = †

rLB(b) otherwise

(arrow) if A,B ∈ G, we define A→ B by:

— OA→B = {↓a | a ∈ OA} ∪ {↑b | b ∈ OB}

— LA→B(↓a) =















† if LA(a) = †

↓LA(a) otherwise
LA→B(↑b) =















† if LB(b) = †

↑LB(b) otherwise

(quantification) if A ∈ G and i > 0, we define ∀Xi.A by:

— O∀Xi .A = {⋆a | a ∈ OA ∧ ♯(a) , i} ∪ {⋆a[0] | a ∈ OA ∧ ♯(a) = i}
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— L∀Xi .A(⋆a) =















† if LA(a) = †

⋆LA(a) otherwise
L∀Xi .A(⋆a[0]) = ⋆0

This gives rise to an inductive interpretation of a formula, which coincides with the

one defined from the syntactic tree.

Finally, we define an operation of substitution on arenas:

Definition 20 (substitution). Let A,B ∈ G. The substitution of B for Xi in A is the arena

A[B/Xi] defined by:

— OA[B/Xi] = {a ∈ OA | ♯(a) , i} ∪ {a[b] | a ∈ OA ∧ ♯(a) = i ∧ b ∈ OB}

— LA[B/Xi](a) = LA(a) and LA[B/Xi](a[b]) =















† if LB(b) = †

a[LB(b)] otherwise

One can check that this coincides with the operation of substitution on formulas.

6. The typed model

6.1. Moves and strategies on an arena

We are now going to describe how we can play in an arena. We will take advantage of the

way we have defined arenas: whereas in many second order game models like (Hughes,

2000) or (de Lataillade, 2007) moves have a complex structure, here they will be easy to

derive from OA and LA.

As in (Abramsky and Jagadeesan, 2003), the intuition is that a move in A can either

be built directly from an occurrence ofOA, or it can be decomposed as m1[m2], where m1

is built from an occurrence of OA and m2 is a move in another arena B which substitutes

a quantifier.

Note that the moves and strategies defined this way do not constitute the morphisms

of our model, but they will be used as interpretations of Church-style terms.

We introduce the grammar of typed moves:

m ::= ↑m | ↓m | rm | lm | ⋆Bm | j (B ∈ G, j ∈N)

These moves form the setM.

The operation of anonymityA :M→ A erases the arena indication in a typed move:

— A(i) = i for i ≥ 0

— A(⋆Am) = ⋆A(m)

— A(αm) = αA(m) for α ∈ {r, l, ↑, ↓}.

For m ∈M and a ∈ A, we define a partial operation of formula extraction m
a by:

— ⋆Bm
⋆0 = B

— if m
a is defined, ⋆

Bm
⋆a =

αm
αa =

m
a where α ∈ {↑, ↓, r, l}

Definition 21 (moves of an arena). Let A be an arena. Its set of movesMA ⊆M is given

by defining the relation m ∈ MA by induction on m:
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— ifA(m) = a ∈ OA and LA(a) = † then m ∈ MA

— if m = m1[m2], where A(m1) = a ∈ OA, LA(a) , † and m2 ∈ MB with B = m1

LA(a) , then

m ∈ MA.

This definition is well-founded, because in the second case we necessarily have at

least one token ⋆B in m1, so the size of m2 is strictly smaller than the size of m1[m2]: that

is why we say that the definition is inductive.

Example: Let us recall the type A = ∀X1.(X1 → ((∀X2.X2)→ (X3×⊥))) of the preceding

example. One possible way to “play a move” in this arena§ is to instantiate the variable

X1 with a type B (take B = ⊥ × X3 for example), then to go on the left side of the first

arrow and to play a move of B.

This corresponds to a move like m = ⋆B↓r3. One can check with the definition that

this move indeed belongs to MA: m = m1[m2] with m1 = ⋆B↓0 and m2 = r3. A(m1) =

⋆↓0 ∈ OA, LA(⋆↓0) = ⋆0 and ⋆B↓0
⋆0 = B. Moreover, A(m2) = r3 ∈ OB and LB(m2) = † so

m2 ∈ MB (first case of the definition). So, m ∈ MB (second case of the definition).

Intuitively, we have the following:

— m1 is the part of the move played in A, and c =A(m1) is the corresponding occurrence

— La(c) indicates where the interesting quantifier has been instantiated

— m1

LA(c) = B indicates by which arena it has been instantiated

— m2 is the part of the move played in B.

Definition 22 (justified sequence, play on an arena). Let A be an arena and s be a play

(resp. a justified sequence) on the grammarM. If every move of s belongs toMA, then

we say that s is a play (resp. a justified sequence) on the arena A. The set of plays on the

arena A is denoted PA.

We noteG(s) the set of arenas appearing in a play s, and FTV(s) = {FTV(A) | A ∈ G(s)}.

Example: Let us consider the play s = ⋆B↑↑l3 ·⋆B↓r3 with B = ⊥×X3. This is of course

a play in A = ∀X1.(X1 → (∀X2.X2)→ (X3 × ⊥)).

What is interesting to notice is that, if for example C = X3 × ⊥, then the sequence

s′ = ⋆C↑↑l3 · ⋆B↓r3 is not a play because it is not a justified sequence: indeed, one must

have B = C if we want m2 = ⋆B↓r3 to be justified by m1 = ⋆C↑↑l3.

More generally, for any move m in a play s which contains the token ⋆B, there is a

sequence of moves m1, . . . ,mn that also contains the token ⋆B at the same place, with

mn = m and mi justifies mi+1 for 1 ≤ i < n. If this sequence is chosen to be of maximal

length, then m1 is the minimal hereditarily justifier of m which contains the token ⋆B: it

is the first time that it appears (at the right place). We will say that B is played by λ(m1)

at the level of m1. Note that λ(m1) = pauxA(m).

One can formalise this definition:

§ This notion is related to the idea of evolving game introduced in (Murawski and Ong, 2001) and reused
in (de Lataillade, 2007).



Curry-style Type Isomorphisms and Game Semantics 23

Definition 23 (level). If a move m in a play s ∈ PA contains the token ⋆B, then it can be

written m = m0 ⋆B [m1]. We say that B is played (by λ(m0)) at the level of m if m1 does

not contain the token ↓.

Typed strategies are defined as expected:

Definition 24 (strategy on an arena). Let σ be a strategy on the grammarM, we say that

σ is a strategy on A and we note σ : A if any play of σ belongs to PA. We say that σ is a

typed strategy in this case.

Strategies on arenas have to be understood as interpretations¶ of Church-style system

F terms; they will be used in the Curry-style model because we have to express in

the model the fact that a well-typed Curry-style term is the erasure of a well-typed

Church-style term.

6.2. Uniformity

In (de Lataillade, 2007), we saw that strategies defined as generally as possible were

not able to capture exactly the type isomorphisms of the syntax, because they were

generating too many isomorphisms in the model. That is why we introduced a notion

of uniformity, which restrained the behaviour of strategies (in order to avoid confusion,

we will call weak uniformity the notion of uniformity defined in (de Lataillade, 2007); by

the way, weak uniformity plays no role in the present model).

The situation is similar here: we are not able to derive the characterisation of Curry-

style type isomorphisms if the well-typed Church-style terms are interpreted by the

(typed) strategies defined above. So we introduce a property of uniformity on these

strategies.

The intuition of this notion is the following: consider an η-long, β-normal term t of

the Church-style system F, and suppose ⊢ t : ∀X.A. The term t has the form t = ΛX.t′

with ⊢ t′ : A: so it behaves like if it was instantiating the quantifier (∀X) with a variable

(X). More generally, the terms of the Church-style system F should be interpreted by

strategies where, each time O has to play an arena, he gives a variable arena Xi.

But these strategies (that we will call symbolic) do not compose: in the Church-style

syntax, this corresponds to the fact that the term ⊢ t : ∀X.A can be instantiated at any

type B through the operation t 7→ t{B}, and so the term t can be extended to any type

A[B/X]. In the interpretation, this means that the symbolic strategy interpreting t must

be extensible to a more complete strategy, where O can play any arena he wants. This

extension consists in playing copycat plays between the different occurrences of the

variables X (like in the syntax, the η-long β-normal form of t{B} is generated from t

through η-expansions), that is why it is called the copycat extension.

To sum up, a uniform strategy will be a symbolic strategy extended by copycat ex-

tension. This idea has to be related with the strategies of Dominic Hughes (Hughes,

¶ We chose not to explicit this interpretation because we do not need it; one could also prove that we have a
model of Church-style system F, but it is not an important question here.
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2000) and, above all, with Murawski’s notion of good strategies (Murawski and Ong,

2001). The notion of weak uniformity discussed above is an analogous, but less restric-

tive, condition: uniformity implies weak uniformity. Finally, uniformity has of course a

strong connection with hyperuniformity: the two notions express analogous ideas, but

hyperuniformity applies on untyped strategies, whereas uniformity is formulated in a

typed context, and then requires more cautiousness.

In the following definition, BV(A) stands for the set of bi-views in an arena A, and

m[B/ j] (resp. s[B/ j]) is obtained from the move m (resp. the play s) by replacing each

token of the form ⋆A by ⋆A[B/X j]. Note that s[B/ j] is a play, but does not necessarily

belong to anyMA for some A: actually, this play will only be used as an intermediate

construction.

Definition 25 (copycat extension of a typed play). Let s = m1 . . .mn be a typed play on

the arena A, let B ∈ G and j > 0.

We first define the flat extension of s: given a sequence of initial moves r = (ri)i∈N

inMB, Fls
j,B(r) is the play t[B/ j] where t is obtained from s by replacing each sequence

mimi+1 such that ♯(mi) = j and λ(mi) = O by mi[ri]mi+1[ri] and, if ♯(mn) = j and λ(mn) = O,

by replacing mn by m′n[rn].

Let mi be an O-move of s such that ♯(mi) = j, suppose Flsj,B(r) = s1m′
i
[ri]m

′
i+1

[ri]s2 with

m′
i
= mi[B/ j] and m′

i+1
= mi+1[B/ j], and let v = n1 . . .np ∈ BV(B). The B-copycat extension

of s at position i along the index j (with parameters v, r) is the play s′ = CCs
j,B(i, v, r) defined

by:

— s = s1 if p = 0 (i.e. v = ǫ)
— s′ = s1m′

i
[n1]m′

i+1
[n1]s2 if p = 1

— s′ = s1m′
i
[n1]m′

i+1
[n1]m′

i+1
[n2]m′

i
[n2] . . .m′

i+1
[np]m′

i
[np] if p even

— s′ = s1m′
i
[n1]m′

i+1
[n1]m′

i+1
[n2]m′

i
[n2] . . .m′

i
[np]m′

i+1
[np] if p > 1 and p odd

Finally, if i = n, Flsj,B(r) = s1m′n[rn] and v = n1 . . .np then

CCs
j,B(n, v, r) =















s1 if p = 0

s1m′n[n1] textotherwise

Definition 26 (copycat variable, symbolic strategy). Let s = s1m be a play on the arena

A with λ(m) = O, and Xi a variable arena played at the level of m. Xi is called a copycat

variable of s if Xi < FTV(ps1q) ∩ FTV(A).

A view s on the arena A is called symbolic if, for any move m of s such that λ(m) = O,

the arenas played at the level of m are two by two distinct copycat variables Xi1 , . . . ,Xin .

A play (resp. a strategy) is called symbolic if all its views are symbolic.

Definition 27 (uniform strategy). Let σ be a strategy on the arena A. σ is said to be

uniform if there exists a symbolic innocent strategy σ̄ on A such that: σ is the smallest

innocent strategy containing σ̄ which is stable by copycat extension along a copycat

variable.

Later we will say that s′ is an extension of s if it is obtained from s by a sequence
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of copycat extensions along copycat variables. A uniform strategy is then stable by

extension.

Arenas and uniform straegies in fact give us a model of the Church-style system

F (see (de Lataillade, 2007)) Intuitively, the views of the symbolic strategy are the di-

rect representation of a term of the Church-style term, whereas the associated uniform

strategy is the extension of this strategy, designed to be able to compose with other

strategies:

Proposition 2. If σ : A→ B and τ : B → C are two uniform strategies then σ; τ : A→ C

is uniform.

The proof of this proposition can be found in appendix A.

7. Typing the untyped strategies

We are now ready to define our interpretation of the Curry-style system F: the key

ingredient will be to relate untyped strategies with typed strategies through a notion

of erasure. First we relate untyped moves with typed moves through the function

erase :M→ X defined by:

erase = E ◦A

The function erase can be extended to plays and strategies in the obvious way:

erase(m1 . . .mn) = erase(m1) . . . erase(mn)

erase(σ) = {erase(s) | s ∈ σ}

At present we have all the ingredients to define our category of games:

— objects are arenas

— a morphism between A and B is an untyped strategy σ such that:

– σ is hyperuniform

– there exists a uniform typed strategy σ̃ : A→ B such that erase(σ̃) ⊆ σ.

In this case we note σ :: A→ B. The strategy σ̃will be called a realisation of σ.

Lemma 5. If σ :: A→ B and τ :: B→ C then σ; τ :: A→ C.

Proof. If we note σ̃and τ̃ two realizations of σ and τ respectively, we obtain a realization

of σ; τ on A→ C by taking the composite σ̃; τ̃ in the grammarM. Indeed, if s ∈ σ̃; τ̃ then

there exists a justified sequence u such that u↾↓↑,↓↓∈ σ̃, u↾↑,↓↑∈ τ̃ and u↾↑,↓↓= s. Then

U = erase(u) is such that U↾↓↑,↓↓∈ σ, U↾↑,↓↑∈ τ and U↾↑,↓↓ is a play, so erase(s) = U↾↑,↓↓∈ σ; τ.
Moreover, σ̃ and τ̃ are uniform, so σ̃; τ̃ is uniform by prop. 2; σ and τ are hyperuniform

so σ; τ is hyperuniform by lemma 3.

Lemma 6. If σ : Γ→ A and X j < Γ then σ : Γ→ ∀X j.A
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Proof. Let us consider σ̃ :: Γ → A, a realization of σ on Γ → A: if σ̃ is the copycat

extension of a symbolic strategy σ̄, then we define the strategy σ̄′ as the strategy σ̄where

each move written ↑m in a play has been replaced by ↑⋆X j m. This strategy is symbolic on

Γ→ ∀X j.A, and its copycat extension σ̃′ is a realization of σ because of hyperuniformity

(indeed, the only difference between σ̃ and σ̃′ is a copycat extension along X j).

Lemma 7. If σ : Γ→ ∀X j.A and B is a arena then σ : Γ→ A[B/X j].

Proof. If σ̃ is a realization of σ on Γ → ∀X j.A, a realization σ̃′ on Γ → A[B/X j] is

obtained by taking only plays where each initial move takes the form ↑ ⋆B m, and by

replacing each move ↑ ⋆B m by ↑m.

Let us now prove the uniformity of σ̃′: if σ̃ is the copycat extension of a symbolic

strategy σ̄, we consider a view s of σ̄. Let X j be the first copycat variable appearing in s,

and let us define E(s) as the smallest set of plays containing s and stable by B-copycat

extensions along j. The strategy σ̄′ will be the smallest innocent strategy containing all

the sets E(s), for s describing all the views of σ̄. Then one can check that σ̃′ is the copycat

extension of σ̄′.

Lemma 8. The following holds:

— id : A→ A

— πr : Γ × A→ A

— If σ : Γ→ A and τ : Γ→ B then 〈σ, τ〉 : Γ→ (A × B).

— eval : (A→ B) × A→ B

— If σ : Γ × A→ B then Λ(σ) : Γ→ (A→ B).

These cases are trivial: for example, a realization of id on A→ A is

ρ = {s ∈ PA→A | s of arrow shape and ∀t ∈ E, t � s⇒ t↾↑= t↾↓}

and it is uniform, with symbolic strategy ρ̄ defined by:

ρ̄ = {s ∈ PA→A | s of arrow shape, s symbolic and ∀t ∈ E, t � s⇒ t↾↑= t↾↓}

If Γ is a typing context of the form Γ = x1 : A1, x2 : A2, . . . , xn : An, we define the

sequence of variables Γ = x1, x2, . . . , xn and the type |Γ| = ⊥ × A1 × A2 × · · · × An (|Γ| = ⊥

if Γ is empty), and we have:

Proposition 3. If Γ ⊢ t : A then ~Γ ⊢ t� : |Γ| → A.

As we did not have a model of the untyped calculus, we do not obtain a model of

the Curry-style system F either. But, fortunately, the relations we get from the untyped

interpretation, together with our notion of realisation, will be sufficiently efficient tools

to be able to characterise type isomorphisms in this language.

8. Hyperforests

In this section we introduce the notion of hyperforest, an arborescent structure built from

arenas. In (de Lataillade, 2007), following (Hughes, 2000), we interpreted second-order
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types directly as hyperforests (that we called polymorphic arenas). But the substitution

was difficult to define in this context, and moves had a complicated formulation; that is

why in this paper we introduce hyperforests only as an indirect interpretation of types.

Hyperforests will be the fundamental structure for our work on isomorphisms.

8.1. Forests and hyperforests

In what follows, the set of subsets of a set E will be denoted P(E). We also make use of

the notion of multiset: we recall that a multiset of elements of E is a function f : E→ N,

and we note e ∈ f iff f (e) > 1. The set of multisets of E is denoted Pmult(E).

Definition 28 (forest). A forest is an ordered set (E,≤) such that, for every y in E,

{x | x ≤ y} is finite and totally ordered by ≤. The forest is finite if E is finite.

Definition 29 (hyperforest). An hyperforest H = (F ,R,D) is a finite forest F together

with a multiset of hyperedges R ∈ Pmult(F ×P(F )) and a partial function of decoration

D : F ⇀ X, where:

— for every (t, S) ∈ R, if s ∈ S then t ≤ s andD(s) is undefined

— for every b, b′ ∈ R with b = (t, S) and b′ = (t′, S′), S ∩ S′ , ∅ ⇒ b = b′.

We note TH
= {t ∈ F | ∃S ⊆ F , (t, S) ∈ R} and SH

= {s ∈ F | ∃(t, S) ∈ R, s ∈ S}.

Definition 30 (reference, friends). Let H = (F ,R,D) be an hyperforest. For any s ∈ F ,

if s ∈ SH then there exists a unique (t, S) ∈ R with s ∈ S: the reference of s is defined

as refH(s) = t and the set of friends of s is frH(s) = S\{s}. If s < SH, refH and frH are not

defined in s.

We are now going to exhibit the hyperforest structure associated with an arena A.

8.2. From partially ordered sets to forests

Let (E,≤) be a partially ordered set. The relation ⊢ ⊆ E ∪ (E × E) is given by:














⊢ e iff e′ ≤ e⇒ (e′ = e)

e ⊢ e′ iff e ≤ e′ ∧ ∀ f , e ≤ f ≤ e′ ⇒ (e = f ∨ e′ = f )

One defines the set F of paths in (E,≤), i.e. the set of sequences e1e2 . . . en of elements

of E such that ⊢ e1 and ei ⊢ ei+1 for 1 ≤ i ≤ n − 1. If we consider the prefix ordering ≤′ on

F, then (F,≤′) is a forest.

We also define the operation or : F → E by or( f ) = en if f = e1 . . . en (or( f ) is called the

origin of f ).

8.3. From arenas to hyperforests

If A is an arena,OA is a finite partially ordered set, to which one can associate a forestFA

through the preceding construction. Extending ⊢ to FA generates the enabling relation
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of the forest: this justifies a posteriori the definition of an enabling relation for arbitrary

moves given in section 3.

Furthermore, one deduces from LA the multiset RA ∈ Pmult(FA × P(FA)) as follows :

we set

L = {a[⋆0] ∈ A | ∃a′ ∈ OA, a[⋆0] ⊑p a′}

The value of RA on (r, S) is equal to the number of occurrences y ∈ L such that:

— y ⊑p or(t)

— for every t′ ≤ t, if y ⊑p or(t′) then t′ = t

— S = {s ∈ FA | t � s ∧LA(or(s)) = y}

One also defines the partial functionDA : FA ⇀ X by:DA(x) = Xi iff ♯(or(x)) = i (i > 0).

Then we have:

Lemma 9. If A is an arena, then HA = (FA,RA,DA) is an hyperforest.

Example: Consider the type A = ∀X1.((X1 × X2)→ (X1 × ⊥)). We have:

OA = {⋆↓l0, ⋆↓r2, ⋆↑l0, ⋆↑r0}

and:


































LA(⋆↓l0) = ⋆0

LA(⋆↓r2) = †

LA(⋆↑l0) = ⋆0

LA(⋆↑r0) = †

The paths are: a = ⋆↑l0, b = ⋆↑l0 · ⋆↓l0, c = ⋆↑l0 · ⋆↓r2, d = ⋆↑r0, e = ⋆↑r0 · ⋆↓l0 and

f = ⋆↑r0 · ⋆↓r2. Besides, L = {⋆0}.

Hence the hyperforest HA is given by:

FA = {a, b, c, d, e, f }

RA(r) = 1 if r ∈ {(a, {a, b}), (d, {e})} RA(r) = 0 otherwise

DA(c) =DA( f ) = X2

This can be resume in the following representation of HA:

2

a

b c e f

d

X
2

X

One can extend the definition of polarity to the nodes of the hyperforest: if A is an arena

with associated hyperforest HA = (FA,RA,DA), then for a ∈ FA we define λ(a) = λ(or(a)).

This coincides with an alternative definition of polarity, which is common in HO-style
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games: λ(a) = O (resp. λ(a) = P) if the set {a′ ∈ FA | a′ ≤ a} has an odd cardinality (resp.

an even cardinality). Note also that pauxA(or(a)) = λ(refA(a)).

Finally, if A is an arena, we note:

frA = frHA refA = refHA SA = S
HA TA = T

HA

Note that the nodes of the forest FA contain more information than the occurrences

of OA. Indeed, given a node c ∈ FA, one is able to give the ordered list of its ancestors,

whereas for an occurrence we may have many ancestors that are not compatible one

with the order for the ordering. This idea will be used in the proof of theorem 1 to reason

about plays with nodes instead of occurrences.

9. Type isomorphisms

9.1. Isomorphisms in the model

If R ∈ PmultE and f : E→ F, we note f (R) the multiset defined by:

f (R)(g) =
∑

e∈R∧ f (e)=g

R(e)

Definition 31 (Church-isomorphism). Let H1 = (F1,R1,D1) and H2 = (F2,R2,D2) be

two hyperforests. We say that H1 and H2 are Church-isomorphic (H1 ≃Ch H2) if there

exists a bijection f : F1 → F2 which preserves the hyperforest structure, i.e. such that:

— a ≤ a′ iff f (a) ≤ f (a′)

— R2 = f (R1)

— D2 ◦ f = D1

Definition 32 (Curry-isomorphism). Let H1 = (F1,R1,D1) and H2 = (F2,R2,D2) be two

hyperforests. We say that H1 and H2 are Curry-isomorphic (H1 ≃Cu H2) if there exists a

bijection f : F1 → F2 such that:

— a ≤ a′ iff f (a) ≤ f (a′)

— SH2 = f (SH1 )

— for every (t, S) ∈ R1 (resp. (t, S) ∈ R2), if there exists s ∈ S such that λ(s) , λ(t), then

( f (t), f (S)) ∈ R2 (resp. ( f−1(t), f−1(S)) ∈ R1)

— D2 ◦ f = D1.

Definition 33 (game isomorphism). A game isomorphism between two arenas A and

B is a couple of untyped strategies σ : A → B and τ : B → A such that σ; τ ⊆ id and

τ; σ ⊆ id.

We say that this isomorphism is total if there exists a total realisation of σ and of τ. We

note A ≃g B if there is a total game isomorphism between A and B.

We are now able to formulate the key theorem of our paper. This theorem provides

a geometrical characterisation of isomorphisms in the model, which is the core of the

proof of equational characterisation for the syntax.
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Theorem 1. Let A,B ∈ G. If there exists a total game isomorphism (σ, τ) between A and

B ( A ≃g B) then their hyperforests are Curry-isomorphic (HA ≃Cu HB).

The proof of this theorem can be found in appendix B.

9.2. Characterisation of Curry-style type isomorphisms

Proving theorem 1 was the main step towards the characterisation of Curry-style iso-

morphisms: we are now able to establish our final result.

Let us recall the equational system ≃ε which we claim to characterise Curry-style type

isomorphisms:

A × B ≃ε B × A

A × (B × C) ≃ε (A × B) × C

A→ (B→ C) ≃ε (A × B)→ C

A→ (B × C) ≃ε (A→ B) × (A→ C)

∀X.∀Y.A ≃ε ∀Y.∀X.A

A→ ∀X.B ≃ε ∀X.(A→ B) if X < FTV(A)

∀X.(A × B) ≃ε ∀X.A × ∀X.B

∀X.A ≃ε A[∀Y.Y/X] if X < NegA

Lemma 10. Let A and B be two types such that the hyperforests HA and HB are Curry-

isomorphic. Then A and B are equal up to the equational system ≃ε.

Proof. Let A′ and B′ be the normal forms of A and B for the following rewriting system:

∀X.C⇒ C[∀Y.Y/X] if X < NegC and C , X

If D1 = ∀X.C and D2 = C[∀Y.Y/X] with X < NegC, then HD1
≃Cu HD2

: indeed, the

bijection f : FD1
→ FD2

which preserves the ordering and such that SD2
= f (SD1

) and

DD2
◦ f = D1 is easy to define (in factOD1

and OD2
are already in bijection). The fact that

X < NegC precisely implies that, for any (t, S) ∈ RD1
corresponding to the quantification

∀X (i.e. such thatL∀X.A(or(s)) = ⋆0 for every s ∈ S), there is no s ∈ S such that λ(s) , λ(t).

Reciprocally, if for any (t, S) ∈ RD2
corresponding to a quantification ∀Y.Y, S = {t} so

there is no s ∈ S such that λ(s) , λ(t). Any other hyperedge is preserved by f .

Moreover, being Curry-isomorphic is a congruence (i.e. it is preserved by context), so

HA ≃Cu HA′ , HB ≃Cu HB′ , and hence HA′ ≃Cu HB′ . HA′ and HB′ are such that for every

(t, S) ∈ RA′ (or (t, S) ∈ RB′ ), either S = {t} or S contains a node s with λ(t) , λ(s). Because

of the definitions of ≃Cu and ≃Ch, this implies HA′ ≃Ch HB′ .

It has already been proved in (de Lataillade, 2007)‖ that in this case A′ ≃′ε B′, where ≃′ε
is the same equational system as ≃ε, except that it does not make use of the last equation.

Hence, we have A ≃ε B.

‖ In (de Lataillade, 2007) the interpretation of types was directly hyperforests.
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Theorem 2. Two types A and B are isomorphic in Curry-style system F if and only if

A ≃ε B.

Proof. For the implication, suppose thatλx.t andλx.u is the couple of terms that realise

the type isomorphism. We know from corollary 2 that it implies: α~x ⊢ u�;α~x ⊢ t� ⊆ id

and α; ~x ⊢ u�;α~x ⊢ t� ⊆ id. And we also have α; ~x ⊢ t� : A→ B and α; ~x ⊢ u� : B→ A.

Furthermore, one can prove that there exists a total realisation of σ1 = ~x ⊢ t� and

σ2 = ~x ⊢ u�: indeed, consider t′, the βπ-normal form of t, we know that ~x ⊢ t′� = σ1.

We choose the realisation of ~x ⊢ t� obtained by applying the constructions given in

the proofs of section 7. The strategy σ1 is the interpretation of a normal form, where

applications are necessarily of the form yT where y is a variable and T is a term. Then

the associated realisation is total on A → B: indeed, the projections are total, and the

constructions used the interpret (→ I), (×I), (×E1), (×E2), (∀I), (∀E) and the application

of a variables y to a term T preserve totality.

So, we have a total game isomorphism between A and B. From theorem 1 and lemma 10

we deduce A ≃ε B.

For the reciprocal, we already know from (Di Cosmo, 1995) the existence in the Church-

style system F of the isomorphisms corresponding to each equation of ≃ε, except the

last one (∀X.A ≃ε A[∀Y.Y/X] if X < NegA). This implies their existence in the Curry-style

system F.

Hence, we need, given a type A such that X < NegA, to find two Curry-style terms

t : ∀X.A → A[∀Y.Y/X] and u : A[∀Y.Y/X] → ∀X.A which compose in both ways to give

the identity. We suppose Y does not appear at all in A, even as a bound variable.

We take t = λx.x: indeed, the identity can be shown to be of type ∀X.A → A[∀Y.Y/X]

through the following type derivation:

x : ∀X.A ⊢ x : ∀X.A
x : ∀X.A ⊢ x : A[∀Y.Y/X]

⊢ λx.x : ∀X.A→ A[∀Y.Y/X]

To build a term of type A[∀Y.Y/X]→ ∀X.A in the Curry-style system F, we will make

use of the associated Church-style term.

Consider the term P of the Church-style system F which corresponds to the η×-long

form of the identity on A. This term has the form P = λxA.P′. We then build the term Q ob-

tained from P′ by replacing each variable y appearing in the scope of a binderλyX by y{X},

and each binder λzB such that X ∈ PosB by λzB[∀Y.Y/X]. We finally set N = λxA[∀Y.Y/X]ΛX.Q.

For example, if A = (X→ ⊥)→ ⊥, then N = λx((∀Y.Y)→⊥)→⊥.ΛX.λyX→⊥.x(λz∀Y.Y.y(z{X})).

The fact that X < NegA ensures that N is of type A[∀Y.Y/X]→ ∀X.A in the Church-style

system F. We note u the untyped λ-term obtained by erasing the type indications in N

(otherwise said, u is the erasure of N). Going from P to N, we have only modified the

type indications appearing in the terms, so u is simply an η×-expansion of the identity

λx.x
Finally, t and u are both equal to the identity through the equalities of the Curry-style

system F, so they compose in both ways to give the identity.
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10. Conclusion

We have proved that type isomorphisms in Curry-style system F can be characterised

by adding to the equational system of Church-style system F isomorphisms a new,

non-trivial equation: ∀X.A ≃ε A[∀Y.Y/X] if X < NegA. Otherwise said, this equation

characterises all the new type equivalences one can generate by erasing type indications

in Church-style terms.

We used a game semantics model in order to take advantage of its dynamical and

geometrical properties. The main features of the model were however often inspired

by a precise analysis of the syntax: indeed, an interpretation of the quantifier as an

intersection (or a lower bound like in (Chroboczek, 2003)) was not precise enough to be

able to characterise type isomorphisms.

One can notice that our type system does not contain the type ⊤; correspondingly,

our model has no empty arena. This is because the rule generally associated to ⊤ takes

the form: t = ⋆ if Γ ⊢ t : ⊤. This rule is of course difficult to insert in a Curry-style

setting, where terms are not typed a priori, and we have no clue whether such a rule can

be adapted to this context. Anyway, the introduction of an empty arena in the model

would break the proof and, more interestingly, give raise to new isomorphisms like

∀X.(X→ ⊥) ≃g ⊥. The characterisation of isomorphisms in this model, and the possible

connection with an actual syntax, have to be explored.

But the main trail of future exploration concerns parametric polymorphism. The no-

tion of relational parametricity, introduced by Reynolds (Reynolds, 1983), comes histor-

ically from the idea that a second-order function shall not depend on the type at which

it is instantiated. This has led first to a semantic definition of parametricity, then to a

syntactic formalisation of this notion, first by Abadi, Cardelli and Curien (Abadi et al.,

1993) and then by Plotkin and Abadi (Plotkin and Abadi, 1993). Dunphy (Dunphy, 2002)

recently gave a categorical characterisation of parametric polymorphism.

The great advantage of parametric models is that second-order enjoys nice and natural

properties in these models. For example:

— ∀X.X→ X is a terminal object

— ∀X.(A→ B→ X)→ X is a product of A and B

— ∀X.X is an initial object

— ∀X.(A→ X)→ (B→ X)→ X is a coproduct of A and B.

All these properties are of course wrong in the model described in the present paper.

Trying to build a parametric game model is a highly appealing challenge: one would

be glad to extend the concrete notions and flexible features of games into a context

where parametricity is understood. Studying isomorphisms in this context would be a

natural question, considering the particularly powerful ones corresponding to the above

properties.

Longo, Milsted and Soloviev introduced two properties related to the study of para-

metricity: genericity and the axiom (C) (Longo et al., 1993). The study of these properties

in our game semantics context could be done probably more easily, as a first step, than

the study of parametricity itself. For instance, the game model given by Abramsky and
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Jagadeesan in (Abramsky and Jagadeesan, 2003) was designed in such a way that most

types are generic.

Finally, relational parametricity seems to be related to Curry-style system F, if we

believe in a conjecture of Abadi-Cardelli-Curien which says the following: suppose you

have two terms of type A whose type erasures are the same. Then they are parametrically

equal (the converse is false). This means that the parametric equality is (strictly) stronger

than the Curry-style equality: the study on both Curry-style system F and parametricity

in the context of games may help to explore this question.
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Appendix A. Uniform strategies compose

Proposition 2. If σ :: A→ B and τ :: B→ C are two uniform strategies then σ; τ :: A→ C

is uniform.

Proof. Consider the following strategy

ρ̄ = {u↾↑,↓↓| u ∈ Int ∧ u↾↓↑,↓↓∈ σ ∧ u↾↑,↓↑∈ τ ∧ u↾↑,↓↓ symbolic play}

It is an innocent strategy on A → C (because it is a restriction of σ; τ, which is innocent

like in HO models), and it is of course symbolic. We call ρ its copycat extension, and we

want to prove that ρ = σ; τ.
We first prove that ρ ⊆ σ; τ, which means thatσ; τ contains all copycat extensions of

s ∈ ρ̄ along a copycat variable X j.

Let us consider the play s′ = Flsj,D(r) for s = m1 . . .mn ∈ ρ̄, D ∈ G and r sequence

of initial moves in MD. There exists a justified sequence u and two plays s1 ∈ σ and

s2 ∈ τ such that u ↾↓↑,↓↓= s1, u ↾↑,↓↑= s2 and u ↾↑,↓↓= s. s1 (resp. s2) is not necessarily

symbolic, but its views are copycat extensions of symbolic plays, and furthermore O

plays symbolically for moves of shape ↓↓ (resp. ↑).

Let U0 be be the justified sequence obtained from u by replacing each sequence of

moves mib1 . . . bqmi+1 with ♯(mi) = j by mi[ri]b1[ri] . . . bq[ri]mi+1[ri], and let us set U =

U0[D/ j]. Then U↾↓↑,↓↓= s′
1
∈ σ because all the views of s′

1
are copycat extensions of views

of s1 along copycat variables. Similarly U↾↑,↓↑∈ τ, so U↾↑,↓↓= s′ ∈ σ; τ.
Let us now consider a move mi of s such that ♯(mi) = j, and a bi-view v = n1 . . .np in

the arena D, and let us set S = CCs
j,D(i, v, r). If U = U1m′

i
[ri]b1[ri] . . . bq[ri]m

′
i+1

[ri]U2 with

m′
i
= mi[D/ j] et m′

i+1
= mi+1[D/ j], we build another justified sequence U′, defined as

follows:

— if p = 1, U′ = U1m′
i
[n1]b1[n1] . . . bq[n1]m′

i+1
[n1]U2

— if p even,

U′ = U1m′
i
[n1]b1[n1] . . . bq[n1]m′

i+1
[n1]m′

i+1
[n2]bq[n2] . . . b1[n2]m′

i
[n2]

. . . . . .m′
i+1

[np]bq[np] . . . b1[np]m′
i
[np]

— if p odd and p > 1,

U′ = U1m′
i
[n1]b1[n1] . . . bq[n1]m′

i+1
[n1]m′

i+1
[n2]bq[n2] . . . b1[n2]m′

i
[n2]

. . . . . .m′
i
[np]b1[np] . . . bq[np]m′

i+1
[np]

U′ ↾↓↑,↓↓ is a copycat extension of s1 (s′
1

was the flat extension) so U′ ↾↓↑,↓↓∈ σ, and

similarly U′↾↑,↓↑∈ τ. U′↾↑,↓↓ is a play so U′↾↑,↓↓= S ∈ σ; τ.

The last thing to prove is that σ; τ ⊆ ρ. We suppose that σ and τ are the copycat

extensions of the symbolic strategies σ̄ and τ̄ respectively. Consider a view s ∈ σ; τ, there

exists a justified sequence U for which U↾↓↑,↓↓= s1 ∈ σ, U↾↑,↓↑= s2 ∈ τ and U↾↑,↓↓= s.

We allow ourselves to identify a move of U with its projection along {↑, ↓↓}, {↑, ↓↑} or

{↓↑, ↓↓}.
Our goal is to prove that s is obtained from ρ̄by a certain number of copycat extensions.
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We will build, move after move, a justified sequence u such that s is an extension of

u↾↑,↓↓∈ ρ.

Let u be a justified sequence, prefix of U, we will define by induction a justified

sequence u such that:

— u↾↑,↓↓ symbolic play

— pu↾↓↑,↓↓q extension of pu↾↓↑,↓↓q

— pu↾↑,↓↑q extension of pu↾↑,↓↑q

— u↾↑,↓↓ extension of u↾↑,↓↓.

If u = ǫ, we set u = ǫ.

If u = u0m, as the interaction mechanism is the same as in HO-games, we can reuse

the results on state automata (cf (Harmer, 1999)). So we have three cases:

— Case #1: u0↾↓↑,↓↓, u0↾↑,↓↑ and u0↾↑,↓↓ are of even length. Then m is of shape ↑ or ↓↓.

In the case where m is of shape ↑, we have pu0↾↑,↓↑qmn ∈ τ for some n, and as τ is

uniform there exists a symbolic play s2m̄n̄ for which pu0↾↑,↓↑qmn is an extension. As

we also have by induction a play pu0↾↑,↓↑q for which pu0↾↑,↓↑q is an extension, this

means that pu0↾↑,↓↑q is an extension of s2. Applying to s2m̄ all the copycat extensions

that necessary to transform s2 into pu0q↾↑,↓↑, we obtain the play pu0q↾↑,↓↑ m′, we set

u = u0m′ and we can check that u satisfies all the required properties. The case where

m is of shape ↓↓ is similar.

— Case #2: u0↾↑,↓↑ is of even length, u0↾↓↑,↓↓ and u0↾↑,↓↓ are of odd length. Then m is

of shape ↓↑ or ↓↓. In both cases, we have u0 = u1n with u1↾↓↑,↓↓ nm ∈ σ for some n,

and we set pu1↾↓↑,↓↓ nq = s0n. As σ is uniform there exists a symbolic play s1m̄ for

which s0nm is an extension. As we also have by induction a play pu0↾↓↑,↓↓q for which

s0n is an extension, this means that pu0↾↓↑,↓↓q is an extension of s1. Applying to s1m̄

all the copycat extensions necessary to transform s1 into pu0 ↾↓↑,↓↓q, we obtain the

play pu0↾↓↑,↓↓qm
′, we set u = u0m′ and we can check that u satisfies all the required

properties.

— Case #3: u0↾↓↑,↓↓ is of even length, u0↾↑,↓↑ and u0↾↑,↓↓ are of odd length. Then m is

of shape ↑ or ↓↑. In both cases, we have u0 = u1n with u1↾↑,↓↑ nm ∈ τ for some n,

and we set pu1 ↾↑,↓↑ nq = s0n. As τ is uniform there exists a symbolic play s1m̄ for

which s0nm is an extension. As we also have by induction a play pu0↾↑,↓↑q for which

s0n is an extension, this means that pu0↾↑,↓↑q is an extension of s1. Applying to s1m̄

all the copycat extensions necessary to transform s1 into pu0 ↾↑,↓↑q, we obtain the

play pu0↾↑,↓↑qm
′, we set u = u0m′ and we can check that u satisfies all the required

properties.
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Appendix B. Proof of A ≃g B⇒ HA ≃Cu HB

For the sake of simplicity, we will from now on identify the occurrences of OA (resp. of

OB) with the corresponding occurrences of OA→B or OB→A.

Before proving the implication A ≃g B⇒ HA ≃Cu HB we need a first lemma:

Lemma 11. Let s1 ∈ PB→A and s2 ∈ PA→B be two even-length plays such that:

— s1 and s2 are zig-zag, which means:

– each Player move following an Opponent move of shape ↑ (resp. ↓) is of shape ↓

(resp. ↑)

– each Player move following an initial Opponent move is justified by it

– s↾↓ and s↾↑ have the same pointers

— erase(s1↾↑) = erase(s2↾↓)

— the arenas played by O in s1 (resp. dans s2) at the level of a move of shape ↑ (resp. ↓)

are copycat variables.

Then there exists a justified sequence u such that: u↾↓↑,↓↓ flat extension of s1, u↾↑,↓↑ flat

extension of s2 and u↾↑,↓↓ is a play.

Proof. We build the sequence u by induction on n where 2n is the length of the play s1.

If n = 0, u = ǫ.

If n = p + 1 with p even, we have s2 = S2m2n2 and s1 = S1n1m1. We already have by

induction a sequence u0 such that S′
1
= u0↾↓↑,↓↓ flat extension of S1 and S′2 = u0↾↑,↓↑ flat

extension of S2. We can write n2 = n0[M] and n1 = n′0[M′] with c = A(n0) =A(n′0) ∈ OB.

If pauxA→B(c) = O, we have M = i for some i. By applying to s1 the extensions that

transform S1 into S′
1
, we obtain a flat extension S′

1
N0

1
M0

1
. By applying the extensions that

transform n′
0

into n0 we obtain a new flat extension S′
1
N1M1. Then we apply to s2 the flat

extensions that transform S2 into S′
2

and those which transform i into M′, and we obtain

a flat extension S′
2
M2N1. We then set u = u0M2N1M1.

If pauxA→B(c) = P, we have M′ = i for some i. By applying to s2 the extensions which

transform S2 into S′
2
, we obtain a flat extension S′

2
M2N2. Then we apply to s1 the flat

extensions which transform S1 into S′
1
, those who transform n′0 into n0 and those which

transform i into M, and we obtain a flat extension S′
1
N2M1. We then set u = u0M2N2M1.

Finally, if pauxA→B(c) is not defined, we have M′ = M = i. We apply to s2 the flat

extensions which transform S2 into S′2, we obtain S′2M2N2; we apply to s1 the extensions

that transform S1 into S′
1

and those which transform n′0 into n0, we obtain S′
1
N2M1. We

then set u = u0M2N2M1.

If n = p + 1 with p odd, we have s1 = S1m1n1 and s2 = S2n2m2. We already have by

induction a sequence u0 such that S′
1
= u0↾↓↑,↓↓ flat extension of S1 and S′2 = u0↾↑,↓↑ flat

extension of S2. We can write n1 = n0[M] and n2 = n′0[M′] with c = A(n0) =A(n′0) ∈ OB.

If pauxA→B(c) = O, we have M′ = i for some i. By applying to s1 the extensions which

transform S1 into S′
1
, we obtain a flat extension S′

1
M1N1. We apply to s2 the flat extensions

which transform S2 into S′2, those which transform n′0 into n0 and those which transform

i into M, and we obtain a flat extension S′2N1M2. We then set u = u0M1N1M2.



Joachim de Lataillade 38

If pauxA→B(c) = P, we have M = i for some i. By applying to s1 the extensions which

transform S1 into S′
1
, we obtain a flat extension S′

1
M0

1
N0

1
. By applying then the extensions

which transform i into M′ we obtain a new flat extension S′
1
M1N1. We apply to s2 the

extensions which transform S2 into S′
2

and those which transform n′
0

into n0, and we

obtain a flat extension S′
2
N1M2. We then set u = u0M1N1M2.

Finally, if pauxA→B(c) is not defined then M′ =M = i. We apply to s2 the flat extensions

which transform S2 into S′
2

and those which transform n′
0

into n0, we obtain S′
2
N2M2; we

apply to s1 the extensions which transform S1 into S′
1
, we obtain S′

1
M1N2. We then set

u = u0M1N2M2.

To show that u ↾↑,↓↓ is a play, it suffices to remark that, in each case of the above

iteration, we have that ♯(M2) = ♯(M1), and that, in A → A, the polarity of M2 is the

opposite of the polarity of M1.

Theorem 1. Let A,B ∈ G. If there exists a total game isomorphism (σ, τ) between A and

B (A ≃g B) then their hyperforests are Curry-isomorphic (HA ≃Cu HB).

Proof. The proof of this theorem will take different steps:

— we first build two typed plays s
p

1
and s

p

2
whose respective erasures are the plays

a1[i1] f (a1)[i1] f (a2)[i2]a2[i2] · · · ∈ σ

f (a1)[i1]a1[i1]a2[i2] f (a2)[i2] · · · ∈ τ

with i1, i2, · · · ∈N
— these two plays give a bijection f : FA → FB such that

a1[y1] f (a1)[y1] f (a2)[y2]a2[y2] · · · ∈ σ

f (a1)[z1]a1[z1]a2[z2] f (a2)[z2] · · · ∈ τ

for any choice of the moves yi and zi, by hyperuniformity

— we then build, move by move, two plays sp et up, belonging to the total realisations

of σ and τ respectively, such that their erasures take the above form for an adequate

choice of yi and zi

— the choice of arenas and the conditions on the erasure of sp and up will allow us to

conclude that f satisfies the conditions of a Curry-isomorphism.

Construction of the bijection

Let a be a node of FA and a1, . . . , ap be the sequence of nodes of FA such that ⊢ a1, ai ⊢ ai+1

and ap = a. From now on, we will simply denote ai the occurrence or(ai); similarly, for a

node b of FB, we will denote b the occurrence or(b). Finally, we note σ̃ and τ̃ two total

realisations of σ and τ respectively.
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We are going to build, by induction on p, a function f : {a1, . . . , ap} → FB and two

zig-zag plays s
p

1
∈ σ̃ and s

p

2
∈ τ̃ such that††:

— ⊢ f (a1) and f (ai) ⊢ f (ai+1) for 1 ≤ i < n

— s
p

1
↾↑= s

p

2
↾↓

— every arena played by O in s
p

1
(resp. s

p

2
) at the level of a move of shape ↓ (resp. ↑) is a

copycat variable

— A(s
p

2
) = a1[b1] f (a1)[c1] f (a2)[c2]a2[b2] . . .

— A(s
p

1
) = f (a1)[c1]a1[d1]a2[d2] f (a2)[c2] . . .

— ⊢ bi and E(bi) = E(ci) = E(di) ∈N for 1 ≤ i ≤ n.

If p = 0 then we set s0
1
= s0

2
= ǫ.

If p = p′ + 1 with p′ even, A(s
p′

2
) = a1[b1] f (a1)[c1] . . . f (ap′ )[cp′]ap′[bp′] and A(s

p′

1
) =

f (a1)[c1]a1[d1] . . . ap′ [dp′] f (ap′ )[cp′].

We have different cases :

— First consider the case where pauxB→A(ap) = O. Then s
p′

2
m ∈ PB→A with m = m0[i] for

some i,A(m0) = ap and every arena played at the level of m is a copycat variable. By

totality of τ̃, s
p′

2
mn ∈ τ̃ for some n, we note n = m1[m2], A(n) = b ∈ OB (A(m1) ∈ OA

would contradict the fact that σ; τ ⊆ id) and m2 =M[i].

By totality of σ̃ there exists m′ such that s
p′

1
nm′ ∈ σ̃. We set m′ = m′

1
[m′

2
] withA(m′

1
) ∈

OA→B.

Is it possible to have A(m′
1
) ∈ OB ? In that case, we take the symbolic plays S1 and

S2 from which s
p′

1
nm′ and s

p′

2
respectively come from. By using lemma 11, we can

build the justified sequence u such that u↾↓↑,↓↓ is a flat extension of S2, u↾↑,↓↑ is a flat

extension of S1 and u↾↑,↓↓ is a play. Then u↾↑,↓↓∈ τ̃; σ̃, and u↾↑,↓↓ NM′ where N and

M′ are ontained from n and m′ by flat extensions so u↾↑,↓↓ NM′ ∈ id. But this play

contains two successive moves of shape ↑, which is impossible.

So, A(m′
1
) ∈ OA. As σ; τ ⊆ id, one has erase(m′) = erase(m), so erase(m′

1
) = E(ap), thus

A(m′
1
) = ap by non-ambiguity of OA, and besides erase(m′

2
) = i.

If p = 1 then ⊢ b. If p > 1, m′ is justified in s
p′

1
nm′ by the move n′ such that A(n′) =

ap′[bp′ ]. So, the justifier of n cannot be played before n′, by innocence of σ̃, which

means that n is justified by the move n′′ of s
p′

1
such that A(n′′) = f (ap′ )[cp′]. So,

f (ap′ ) ⊢ b.

We set s
p

1
= s

p′

1
nm′ and s

p

2
= s

p′

2
mn, which means: f (ap) = f (a1) . . . f (ap′ )b (so that

or( f (ap)) = b), bp = i, cp =M[i] and dp = m′2. The proof that erase(M[i]) = i depends on

the auxiliary polarity of b.

If pauxB→A(b) = O then the symbolic play from which s
p

2
comes from is Sã[ j]b̃[ j] ∈ τ̃

with A(ã) = ap and A(b̃) = b. s
p

2
being a copycat extension of this play, we have

M[i] = i, so erase(M[i]) = i.

†† The last condition, which is also the most important, is inspired by the condition of genericity of (Abramsky
and Jagadeesan, 2003). But here we will prove this property for the strategies realising an isomorphism,
whereas in (Abramsky and Jagadeesan, 2003) it is required for every strategy.
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If pauxB→A(b) = P then pauxA→B(b) = O. The symbolic play from which s
p

1
comes

from is Sb̃[ j]ã[M′[ j]] ∈ τ̃ with A(b̃) = b and A(ã) = ap. So by retrieving the copycat

extension we obtain s
p′

1
nm′ = s

p′

1
m1[M[i]]m′

1
[M′[M[i]]], so finally erase(M′[M[i]]) = i,

which implies erase(M[i]) = i.

The case where pauxB→A(b) is undefined is impossible because in this case ♯(b) = 0 , i.

— Let us now consider the case where pauxB→A(ap) = P. Then s
p′

2
m ∈ PB→A with m =

m0[M] for some M with ⊢ M, A(m0) = ap and and every arena played at the level of

m is a copycat variable. By totality of τ̃, s
p′

2
mn ∈ τ̃ for some n, we note n = m1[m2] and

A(n) = b ∈ OB (A(m1) ∈ OA would contradict the fact that σ; τ ⊆ id).

By totality of σ̃ there exists m′ such that s
p′

1
nm′ ∈ σ̃. We set m′ = m′

1
[m′2] withA(m′

1
) ∈

OA→B.

Once again, is it possible to haveA(m′
1
) ∈ OB ? We do the same reasoning as above:

we suppose it is the case, and we take the symbolic plays S1 and S2 from which

s
p′

1
nm′ and s

p′

2
respectively come from. By using lemma 11, we can build the justified

sequence u such that u↾↓↑,↓↓ is a flat extension of S2, u↾↑,↓↑ is a flat extension of S1,

and u↾↑,↓↓ is a play. Then u↾↑,↓↓∈ τ̃; σ̃, and u↾↑,↓↓ NM′ ∈ τ̃; σ̃ where N and M′ are

obtained from n and m′ by flat extensions, so u↾↑,↓↓ NM′ ∈ id. But this play contains

two successive moves of shape ↑, which is impossible.

So, A(m′
1
) ∈ OA. As σ; τ ⊆ id, one has erase(m′) = erase(m), so erase(m′

1
) = E(ap), thus

A(m′
1
) = ap by non-ambiguity ofOA, and besides erase(m′2) =M. But pauxA→B(ap) = O,

so m′2 = i for some i ∈N.

m′ is justified in s
p′

1
nm′ by the move n′ such thatA(n′) = ap′[bp′ ]. So, the justifier of n

cannot be played before n′, by innocence of σ̃, which means that n is justified by the

move n′′ of s
p′

1
such thatA(n′′) = f (ap′ )[cp′]. So, f (ap′ ) ⊢ b.

We set s
p

1
= s

p′

1
nm′ and s

p

2
= s

p′

2
mn, which means: f (ap) = f (a1) . . . f (ap′ )b (so that

or( f (ap)) = b), bp =M, cp = m2 and dp = i. The proof that erase(m2) = i depends on the

auxiliary polarity of b.

If pauxB→A(b) = O then the symbolic play from which s
p

2
comes from is Sã[M′[ j]]b̃[ j] ∈

τ̃ with A(ã) = ap and A(b̃) = b. So by retrieving the appropriate copycat extension

one obtains M =M′[m2]. As erase(M) = i, it implies erase(m2) = i.

If pauxB→A(b) = P then pauxA→B(b) = O and pauxA→B(ap) = O. The symbolic play from

which s
p

1
comes from is Sb̃[ j]ã[ j] ∈ τ̃ with A(b̃) = b and A(ã) = ap. By retrieving the

appropriate copycat extension one obtains m2 = i, so erase(m2) = i.

In the case where pauxB→A(b) is undefined, then the symbolic play from which s
p

1

comes from is Sb̃ã[i] with A(b̃) = b and A(ã) = ap. Which is impossible since in this

case ♯(b) = 0 , i.

— Finally, if pauxB→A(ap) is undefined one has s
p′

2
m ∈ PB→A with A(m) = ap and every

arena played at the level of m is a copycat variable. By totality of τ̃, s
p′

2
mn ∈ τ̃ for

some n, we note n = m1[m2],A(n) = b ∈ OB (A(n) ∈ OA would contradict the fact that

σ; τ ⊆ id).

By totality of σ̃ one has s
p′

1
nm′ ∈ σ̃ for some m′ = m′

1
[m′2] with A(m′

1
) ∈ OA→B. Once

again we prove thatA(m′
1
) ∈ OA,A(m′

1
) = ap and erase(m′) = erase(m) so erase(m′2) = 0.
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We set s
p

1
= s

p′

1
nm′ and s

p

2
= s

p′

2
mn, which means: f (ap) = f (a1) . . . f (ap′ )b (so that

or( f (ap)) = b), bp = 0, cp = m2 and dp = m′2. The proof that erase(m2) = 0 depends on

the auxiliary polarity of b.

If pauxB→A(b) = O then the symbolic play from which s
p

2
comes from is Sãb̃[ j] ∈ τ̃

withA(b̃) = b andA(ã) = ap. But this is impossible since ♯(a) = 0.

If pauxB→A(b) = P then the symbolic play from which s
p

1
comes from is Sb̃[ j]ã ∈ τ̃with

A(b̃) = b andA(ã) = ap. But this is impossible since ♯(a) = 0.

So, pauxB→A(b) is not defined, and m2 = 0. Hence erase(m2) = 0.

If p = p′ + 1 with p′ odd, the reasoning is similar except that we define s
p

1
before s

p

2
.

To see that f is a bijection, let us consider for example the case p = p′ + 1 with p′ even.

As S
p′

1
m1[i]m0[i] ∈ σ̃, we have S1E( f (ap))[i]E(ap)[i] ∈ σwith S1 = erase(S

p′

1
), and it is true

for any i ∈N by hyperuniformity.

If f (ap) = f (a′p), one has erase(s
p

1
) = S1E( f (ap))[i]E(ap)[i] for some i, so S1E( f (a′p))[i]E(ap)[i] ∈

σ. We also have S1E( f (a′p))[ j]E(a′p)[ j] ∈ σ for some j, so S1E( f (a′p))[i]E(a′p)[i] ∈ σ by hyper-

uniformity, thus ap = a′p by determinisme of σ.
Consider now b such that f (ap′ ) ⊢ b. We take the symbolic plays S1 and S2 from

which sp′
1 and s

p′

2
respectively come from. By using lemma 11, we can build the justified

sequence u such that S2 = u↾↓↑,↓↓ is a flat extension of s
p′

2
, S1 = u↾↑,↓↑ is a flat extension

of s
p′

1
and u↾↑,↓↓ is a play. By totality of σ̃ we have S1m1[M]m2[M′] ∈ σ̃ with A(m1) = b

and A(m2) ∈ OA. By totality of τ̃ we have S = S2m2[M′]m′ ∈ τ̃. As σ; τ ⊆ id we have

erase(m′) = erase(m1[M]), and by innocence one shows that ap′ ⊢ a. erase(S) is a copycat

extension of erase(s
p

1
) so erase(m′) = E( f (a)). Hence b = f (a).

We now consider the symbolic plays S
p

1
and S

p

2
from which s

p

1
and s

p

2
respectively come

from. We still have

A(S
p

2
) = a1[b′1] f (a1)[c′1] f (a2)[c′2]a2[b′2] . . .

A(S
p

1
) = f (a1)[c′1]a1[d′1]a2[d′2] f (a2)[c′2] . . .

withE(b′
i
) = E(c′

i
) = E(d′

i
) ∈N for 1 ≤ i ≤ n: indeed, s

p

2
(resp. s

p

1
) is the copycat extension of

S
p

2
(resp. S

p

1
), so if E(c′

i
) , E(b′

i
) (resp. E(d′

i
) , E(c′

i
)) then E(ci) , E(bi) (resp. E(di) , E(ci)).

Construction of the appropriate plays

From now on, we identifiate the occurrences ai and f (ai) with the untyped moves E(ai)

and E( f (ai)) respectively: it does not lead to any confusion thanks to the non-ambiguity

of OA and OB.

To prove that f satisfies the requirements of a Curry-isomorphism, we will extend the

play S
p

1
into a play sp ∈ σ̃ with an appropriate choice of the arenas played by O. The

integer i such that S
p

1
= S0ap[i] or S

p

1
= S0 f (ap)[i] will be replaced by an untyped move

yp, also chosen in an appropriate way.

In the plays sp, we will use the arenas (C j) j∈N defined by: C1 = ⊥×⊥ and C j+1 = C j×C j.
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Note that each initial move of C j takes the form b1(b2(. . . (b j(0)) . . . )), where each bi can

be either r or l. We call r j the initial move of C j where each bi is equal to r. These arenas

will be used in order to have fresh moves, i.e. moves that cannot come from an arena

defined before C j is played. In what follows, the integer np is made to ensure that no

arena defined before step p can belong to Cq for q ≥ p.

Finally, we choose a function ρ_ : G → Awhich associates to each arena D ∈ G a move

ρD ∈ MD satisfying the following conditions:

— ⊢ ρD

— if there exists c ∈ OD such that ⊢ c and LD(c) , †, then ρD = m1[m2] withA(m1) = d,

LD(d) , †, m1

LD(c) = ⊥ × ⊥ and m′3 = l0.

We now build the triple (sp, yp, np) inductively:

— If p = 1, we define the typed move M1 = m1[m2] such that:A(m1) = f (a1), the d1 arenas

played at the level of m1 are C1, . . . ,Cd1
and we choose m2 = ♯( f (a1)) if pauxA→B( f (a1))

is undefined and m2 = r j if m1

LA→B( f (a1)) = C j. Let s1 = M1M′
1

be the copycat extension

of S
p

1
corresponding to these choices, we have erase(M1M′

1
) = f (a1)[y1]a1[y1] where

y1 = erase(m2). If N is the biggest number of tokens r in any initial occurrence of an

arena D defined at the level of M′
1
, we choose n1 = max(d1,N) + 1.

— If p = p′+1 with p′ odd, we define the typed move Mp = m1[m2] such that: erase(m1) =

f (ap), the dp arenas defined at the level of m1 are Cnp′
, . . . ,Cnp′+dp

and m2 is chosen as

follows:

– if pauxA→B( f (ap)) is undefined, m2 = ♯( f (ap))

– if pauxA→B( f (ap)) = O, m2 = r j if m1

LA→B( f (ap)) = C j

– if pauxA→B( f (ap)) = P, let D = m1

LA→B( f (ap)) . We choose m2 = ρD, and we note rD =

erase(m2) ‡‡

Let sp = sp′MpM′
p be the copycat extension of S

p

1
corresponding to these choices, we

have erase(sp′MpM′
p) = erase(sp′) f (ap)[yp]a1[yp] if yp = erase(m2). If N is the biggest

number of tokens r in any initial occurrence of an arena D defined at the level of M′
p,

we choose np = max(np′ + dp,N) + 1.

— If p = p′ + 1 with p′ odd, we do the same choices as in the preceding case, except that

f (ap) must be replaced by ap, and conversely.

Suppose pauxA→B(ap) is defined, then refA→B(ap) = b is also defined. It is important for

the next section of the proof to understand the link between b and the play sp. First,

note that b = ai for some 1 ≤ i ≤ p; then, because of the definition of the set RA→B of

hyperedges, we know that ai is the minimal occurrence c of OA→B such that LA→B(ap) is

a prefix of c. Hence, if Mi (resp. Mp) is the move in sp such that erase(Mi) = ai[yi] (resp.

erase(Mp) = ap[yp]) and if D =
Mp

LA→B(ap) , then the arena D is played by pauxA→B(ap) at the

level of Mi. So, in the construction of sp, D has been played at step i.

‡‡ In the case where there exists c ∈ OD such that ⊢ c andLD(c) , †, m2 is precisely built in such a way that we
cannot have rD = r j for any j.
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We also need to build a play up ∈ τ̃, which extends S
p

2
in an appropriate way. The

procedure is similar.

Curry-isomorphism

We are now going to prove that the bijection f satisfies each requirement of a Curry-

isomorphism.

We first prove that DB ◦ f = DA: suppose DA(ap) = Xi, then sp = sp−1MM′ with

erase(M) = ap[i] and erase(M′) = f (ap)[i]; likewise, up = up−1NN′ with erase(N) = f (ap)[i]

and erase(M′) = ap[i]. If pauxA→B( f (ap)) = O then one should have i = r j for some j by

construction of sp, which is impossible. If pauxA→B( f (ap)) = P then pauxB→A( f (ap)) = O

and one should have i = r j for some j by construction of up, which is impossible. Then

pauxA→B( f (ap)) is not defined, and ♯( f (ap)) = i which means DB( f (ap)) = Xi. Similarly,

DB( f (ap)) = Xi impliesDA(ap) = Xi as well.

We then prove that f (SA) = SB: if ap ∈ S with (t, S) ∈ RA for some t, suppose

LA→B( f (ap)) = †. If pauxA→B(ap) = O then sp = sp−1MM′ with erase(M) = ap[yp] and

erase(M′) = f (ap)[yp], and one should have yp = r j for some j by construction of sp.

But this is impossible since LA→B( f (ap)) = † implies A(M′) ∈ OA→B, so yp ∈ N. If

pauxA→B(ap) = P then pauxB→A(ap) = O, up = up−1NN′ with erase(N) = f (ap)[yp] and

erase(N′) = ap[yp] and one should have yp = r j for some j by construction of up. But this

is impossible since LA→B( f (ap)) = † impliesA(N) ∈ OA→B, so yp ∈N.

Finally, we need to prove the following: for every (t, S) ∈ RA, if there exists c ∈ S such

that λ(c) , λ(t), then ( f (t), f (S)) ∈ RB (the reciprocal would be done similarly). Let us

take a1, . . . , ap the sequence of nodes such that: ⊢ a1, ai ⊢ ai+1 and ap = c. We necessarily

have t = ai for some i ≤ p.

First we prove that refB( f (ap)) = f (ai): suppose that it is false, then refB( f (ap)) = f (a j)

with j , i. First take j < i: if pauxA→B(ap) = O, then f (ap) is an O-move on A → B, so

sp = SMpM′
p where: Mp = m1[m2],A(m1) = f (ap) and m1

LA→B( f (ap)) = D for some D chosen at

step j; and M′
p = m′

1
[m′2],A(m′

1
) = ap and

m′
1

LA→B(ap) = Ck′ for some k′ ≥ ni−1. So we should

have yp = rk to be the move we choose in D, which is impossible by construction of ni−1.

If pauxA→B(ap) = P, we simply note that pauxB→A(ap) = O and do the same reasoning

with up in B → A. In the case where i < j, the reasoning is similar: if pauxA→B(ap) = P,

then sp = SMpM′
p where: Mp = m1[m2],A(m1) = ap and m1

LA→B(ap) = D for some D chosen at

step i; and M′
p = m′

1
[m′2],A(m′

1
) = f (ap) and

m′
1

LA→B( f (ap)) = Ck′ for some k′ ≥ n j−1. This leads

to a contradiction. If pauxA→B( f (ap)) = P, we work on B→ A.

Let us now have b ∈ frA(ap), and suppose that f (b) < frB f (ap). By what has been

proved before we know that pauxA→B( f (b)) is defined, but also that refB( f (b)) has the

same polarity as refA(b): indeed, if pauxA(b) , λ(b) then refB( f (b)) = f (refA(b)), so

λ(refB( f (b))) = λ( f (refA(b))) = λ(refA(b)); similarly, if pauxB( f (b)) , λ( f (b)) then refA(b) =

f−1(refB( f (b))), so λ(refA(b)) = λ( f−1(refB( f (b)))) = λ(refB( f (b))). Finally, if pauxA(b) = λ(b)
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and pauxB( f (b)) = λ( f (b)) then pauxA(b) = pauxB( f (b)) because b and f (b) have the same

polarity. Then, in all cases, paux(b) = paux( f (b)).

We consider that pauxA→B( f (b)) = O (if not, one works with up on B → A), so

pauxA→B(ap) = P and sp = sp−1m1[m2]m′
1
[m′

2
] with

m′
1

LA→B( f (ap)) = Ck for some k. Let

D = m1

LA→B(ap) , we necessarily have that yp = rk = erase(rD). But a problem arises with

b and f (b): as a first case, suppose that b has the polarity P in A. Then there is a

play s′q = s′
q−1

M1[M2]M′
1
[M′

2] in σ̃ constructed the same way as sp, such that erase(s′q) =

erase(s′
q−1

)b[y′q] f (b)[y′q], and where M1

LA→B(b) = D and
M′

1

LA→B( f (b)) = Ck′ with k′ , k. Then we

should have y′q = erase(rD) occurrence of Ck′ , so rk = rk′ which is impossible.

The second case is where b has the polarity O in A. Then there is a play s′q =

M1[M2]M′
1
[M′

2] in σ̃ constructed the same way as sp, such that erase(s′q) = s′ f (b)[y′q]b[y′q],

and where M1

LA→B( f (b)) = Ck′ with k′ , k and
M′

1

LA→B(b) = D. Then we should have y′q = rk′ =

erase(d′) with d′ move in D. But in this case A(d),A(d′) ∈ OD (if not we have a token l

in d or d′), so E(d) = rk and E(d′) = rk′ , hence k = k′ because D is unambiguous. This is

impossible.

f (b) ∈ frB( f (ap)) similarly implies b ∈ frA(ap), so f (S) = {b | s ∈ frB( f (ap))}. This allows

us to conclude that ( f (t), f (S)) ∈ RB.


