
Sequential interactive behaviour

of

recursive program schemes

Pierre-Louis Curien

(IRIF, πr2, CNRS – Univ. Paris 7 – INRIA)

19/12/2017 Tallinn University of Technology

1



Prologue : denotational and operational semantics

Want to understand the meaning of a (piece of) program M of type B with
free identifier of type A.
• Denotational approach : associate some mathematical structures [[A]]
and [[B]] with the types A and B, and a suitable function/morphism [[M ]]
(from [[A]] to [[B]]) with M . [Typically, continuous functions between com-
plete partial orders (cpo’s).]
• Operational approach : specifiy formal rules of execution (a machine, a
rewriting system,. . .) leading to observable results / experiments.
• The two approaches induce each a notion of equivalence :

M =den N iff [[M ]] = [[N ]] (denotational)

M =obs N iff there is no context C[] s.t.


C[M ] −→∗ v
C[N ] −→∗ w
and v 6= w

(observational)

When these two equalities are the same, the (denotational) model is called
fully abstract (FA).

2



Complete partial orders through a key (even the founding) example

Consider the set N of natural numbers, and the set PF of partial functions
from N to N.

• PF has the structure of a partial order : f ≤ g iff whenever f is defined
(notation f ↓), g is also defined and has the same value. [Information order]

• There is a minimum element ⊥ : the nowhere defined partial function.
[No information yest, or diverging computation]

• This partial order is complete : every increasing chain has a least upper
bound [Useful to give meaning to programs defined by general recursive
equations]

3



Scott continuity

The natural notion of morphism between complete partial orders is that
of Scott-continuous function, i.e. a monotonic function that preserves the
least upper bounds of increasing sequences.

The first appearance of such a function (that certainly influenced Scott)
was in recursion theory. Recall that φn is the n-th partial recursive function
(Kleene).

Myhill-Shepeherdson (1955) : Let f be a total recursive function that is
extensional, i.e., φf(m) = φf(n) whenever φm = φn. Then there is a
unique continuous function F : PF → PF ‘extending” f , i.e., such that
F (φn) = φf(n) for all n.

4



Full abstraction problem

In the mid 1970’s :
— Plotkin showed that Scott continuity failed to provide a fully abstract

model for PCF (a Turing complete toy functional language). The mo-
del separates programs that are operationally equivalent.

— Milner constructed a fully abstract model of PCF as a quotient of a
term model.

This launched the full abstraction problem : trying to find another construc-
tion of the fully abstract model of PCF that is ‘independent of the syntax”.

5



Intensional behaviour

In the quest for a fully abstract model of PCF, Berry-Curien investigated in
the late 1970’s a denotational semantics where programs are interpreted
as ... “programs”, yet retaining key expected features :

• there are only finitely many “programs” of finite types (like bool→ bool) ;

• “programs” are not far from being functions : they can be defined as pairs
of a function and a computation strategy.

This semantics turned out to be fully abstract, not for PCF, but for an exten-
sion of PCF with a control operator (1992, Cartwright-Curien-Felleisen).

In the 1990’s, similar ideas came up under the name of game semantics,
but failed to satisfy the above criteria. Yet, they turned out to offer much
more flexibility to interpret various features and effects in programming.

6



Full abstraction problem (perspective)

As regards the original full abstraction problem for PCF, the hope was to
be able to decide observational equivalence for finite types.

But Loader showed in the early 1990’s that this problem is undecidable...

So any attempt to construct a fully abstract model of PCF has to be inef-
fective at some point. Indeed, the game models of the 1990’s achieve full
abstraction for PCF only through a quotient by a (semantically formulated)
notion of observational equivalence.

7



Plan of the talk

— I introduce Kahn-Plotkin’s concrete data structures (1978), which
are kits for assembling atoms to build data (the datas then form a
complete partial order).

— I introduce Berry-Curien’s sequential algorithms (1979) as mor-
phisms between concrete data structrues. They feature pairs of an
ordinary function + a computation strategy for it. I show how to com-
pose them (interaction).

— I show how to interpret primitive recursive schemes (as opposed to
functions) as sequential algorithms, exhibiting their interactive be-
haviour.

— This leads to a new proof of Colson’s utlimate obstinacy theorem
(1989).

8



Concrete data structures

A concrete data structure (or cds) M = (C, V,E,`) is given by three sets
C, V , andE ⊆ C×V of cells, values, and events, and a relation ` between
finite parts of E and elements of C, called the enabling relation. We write
simply e1, . . . , en ` c for {e1, . . . , en} ` c. A cell c such that ` c is called
initial.

In fact, we shall always assume that n ≤ 1, i.e., that enablings are only of
the form ` c or (d, v) ` c

A sequence cn vn . . . c1 v1 c0 such that ` cn and (ci, vi) ` ci−1 for all
0 < i ≤ n is called a proof of c0 (notation ` cn vn . . . c1 v1 c0).

9



States (or strategies, in the game semantics terminology)

A state is a subset x of E such that :

(1) (c, v1), (c, v2) ∈ x⇒ v1 = v2.

(2) If (c, v) ∈ x, then x contains a proof of c.

The conditions (1) and (2) are called consistency and safety, respectively.

The set of states of a cds M, ordered by set inclusion, is a complete par-
tial order, denoted by (D(M),≤) (or (D(M),⊆)). If D is a partial order
isomorphic to D(M), we say that M generates D.

10



Some terminology

Let x be a set of events of a cds. A cell c is called :

• filled (with v) in x iff (c, v) ∈ x,

• enabled in x iff x contains an enabling of c,

• accessible from x iff it is enabled, but not filled in x.

We denote by F (x), E(x), and A(x) the sets of cells which are filled,
enabled, and accessible in or from x, respectively. We write :

x ≺c y if c ∈ A(x) and x ∪ {(c, v)} = y

11



Some examples of cds’s

(1) Flat cpo’s : for any set X we have a cds

X⊥ = ({?},X, {?}×X, {`?}) with D(X⊥) = {∅}∪{(?, x) | x ∈ X}

Typically, we have the flat cpo N⊥ of natural numbers.

(2) Terms over a first-order signature : cells are occurrences described
by words of natural numbers, values are the symbols of the signature, all
events are permitted, ` ε, and (u, f) ` ui for all 1 ≤ i ≤ arity(f).

(3) Pairs of booleans : we have two cells ?.1 and ?.2 (both initial) and
two values T, F , and all possible events. Then

(T, F ) = {(?.1, T ), (?.2, F )} (F,⊥) = {(?.1, F )} (⊥,⊥) = ∅

12



Key example for this talk : lazy natural numbers

This (filiform) cds has cells c0, . . . , cn, . . . and values 0 or S, with events
(ci,0) and (ci, S), and enablings given by

` c0
(ci, S) ` ci+1

We have

D(NL) = {Sn(⊥) | n ∈ ω} ∪ {Sn(0) | n ∈ ω} ∪ {Sω(⊥)}

which as a partial order is organised as the following tree :

c0


0

S c1


0

S c2

{
0
. . .

or


0

S(⊥)


S(0)

S(S(⊥))
{
S(S(0))
. . .

13



Sequential algorithms (preview)

Sequential algorithms are programs of some sort (that can also be equi-
valently described in a number of ways). Here is a prototypical sequential
algorithm from N⊥ ×N⊥ to N⊥ (we decorate the output cell as ?′) :

addl =

request ?′ valof ?.1 is



...

m 7→ valof ?.2 is


...
n 7→ m+ n
...

...

This program specifies a left-to-right algorithm for addition. By interchan-
ging ?.1 and ?.2, we get the right-to-left sequential algorithm for addition.
Both compute the same underlying function, but are different morphisms !

14



Sequential algorithms between M and M′ as forests

F ::= {T1, . . . , Tn}
T ::= request c′ U
U ::= valof c is [. . . v 7→ Uv . . .] | output v′ F

We accept only the typed terms. There are three judgements :

(x, r′) ` F (x, r′) ` T (x, q′) ` U
and the typing rules are as follows :

. . . (x, r′) ` Ti . . .

(x, r′) ` F

(x, r′c′) ` U ` r′c′

(x, r′) ` request c′ U

c ∈ A(x) . . . (x ∪ {(c, v)}, q′) ` Uv ((c, v) ∈ EM) . . .

(x, q′) ` valof c is [. . . v 7→ Uv . . .]

q′ = r′c′ (c′, v′) ∈ EM′ (x, q′v′) ` F

(x, q′) ` output v′ F

15



Branch by branch :

q• ::= rO request c′ | rI is v
rO ::= ε | q• output v′
rI ::= q• valof c

or schematically (using Kleene star)

(request c′ (valof c is v)∗output v′)∗ (and odd prefixes)

There are three judgements : (x, q′) ` q• , (x, r′) ` rO (x, c, q′) ` rI ,
Typing rules :

(x, r′) ` rO ` r′c′

(x, r′c′) ` rO request c′

(x, c, q′) ` rI (c, v) ∈ EM

(x ∪ {(c, v)}, q′) ` rI is v

(∅, ε) ` ε

(x, q′) ` q• q′ = r′c′ (c′, v′) ∈ E◦M′

(x, q′v′) ` q′ output v′
(x, q′) ` q• c ∈ A(x)

(x, c, q′) ` q• valof c

16



Equivalent definitions of sequential algorithms

From the pioneering days, we have 3 equivalent definitions of sequential
algorithms :

1. as states of some exponent cds M→M′

2. as abstract algorithms (or as pairs of a function and a computation
strategy for it)

3. (here) as programs

[For the record, other equivalent definitions :

4. as observably sequential functions (idea due to Cartwright and Felleisen : use
errors to detect how the algorithm explores the data)

5. as bistable and extensionally monotonic functions (Laird)

6. (in the affine case) as a symmetric pair (f, g), where f is a function from input
strategies to output strategies and g is a function from output counter-strategies
to input counter-strategies (Curien 1994)]

17



Exponent of two cds’s

If M, M′ are two cds’s, the cds M→M′ is defined as follows :

• If x is a finite state of M and c′ ∈ CM′, then xc′ is a cell of M→M′.

• The values and the events are of two types :

− If c is a cell of M, then valof c is a value of M→M′, and (xc′, valof c)
is an event of M→M′ iff c is accessible from x ;
− if v′ is a value of M′, then output v′ is a value of M → M′, and
(xc′, output v′) is an event of M→M′ iff (c′, v′) is an event of M′.

• The enablings are also of two types :

(yc′, valof c) ` xc′ iff y ≺c x
. . . , (xic

′
i, output v

′
i), . . . ` xc

′ iff x =
⋃
xi and . . . , (c′i, v

′
i), . . . ` c

′

18



Abstract algorithms

Let M and M′ be cds’s. An abstract algorithm from M to M′ is a partial
function f : D(M)× CM′ ⇀ VM→M′ satisfying the following axioms :

(A1) If f(xc′) = u, then
{

if u = valof c then c ∈ A(x)
if u = output v′ then (c′, v′) ∈ EM′

(A2) If f(xc′) = u, x ≤ y and (yc′, u) ∈ EM→M′, then f(yc′) = u.

(A3) Let f•y = {(c′, v′) | f(yc′) = output v′}. Then :

f(yc′) ↓ ⇒ (c′ ∈ E(f•y) and (z ≤ y and c′ ∈ E(f•z)⇒ f(zc′) ↓)).

Abstract algorithms are ordered by the usual order of extension on partial
functions.

19



Composition of sequential algorithms : a simple example

Consider (m,n) ∈ D(N⊥ ×N⊥ viewed as a morphism

{request ?.1 output m, request ?.2 output n}

from 1 (the empty cds with no cells nor values) to N⊥ × N⊥. then the
composition of addl : N⊥ × N⊥ and (m,n) is obtained by exploring the
forests of addl and (m,n) as follows :

〈request ?′, 1〉 valof ?.1 〈is m, 3〉 valof ?.2 〈is n, 5〉 output m+ n{
〈request ?.1, 2〉 output m
〈request ?.2, 4〉 output n

where the numbers record the progression of the computation. The non-
numbered moves are the successive answers of the two stategies that
serve to continue the computation in the other strategy.

20



Another example of execution : composition + pairing

We now consider the composition of addl and 〈id , id〉 : N⊥ → N⊥ ×N⊥
(which yields an algorithm for computing λx.x + x). One constructs the
branch

〈request ?′, 1〉 valof ? 〈is n, 3〉 output 2n

of this composition as follows :

addl : 〈request ?′, 1〉 valof ?.1 〈is n, 4〉 valof ?.2 〈is n, 6〉 output 2n

〈id , id〉 :
{
〈request ?.1, 2〉 valof ? 〈is n, 3〉 output n
〈request ?.2, 5〉 valof ? is n output n

The fact we can move directly from move 5 to move 6’ output n on the
second branch of 〈id , id〉 displayed above follows from the fact that the
branch 〈request ?′, 1〉 valof ? 〈is n, 3〉 under construction remembers that
? has been already visited and has value n.

21



Composing abstract algorithms

Let M, M′ and M′′ be cds’s, and let f and f ′ be two abstract algorithms
from M to M′ and from M′ to M′′, respectively. The function g, defined as
follows, is an abstract algorithm from M to M′′ :

g(xc′′) =


output v′′ if f ′((f•x)c′′) = output v′′

valof c if
{
f ′((f•x)c′′) = valof c′ and
f(xc′) = valof c .

22



Composing sequential algorithms as programs : preparations

We store information about branches of F in a “fattened” branch of F ′, where each is v′

is now replaced by a pair 〈is v′, rO〉 :

q• ::= rO request c′ | rI 〈is v′, rO〉
rO ::= ε | q• output v′
rI ::= q• valof c

The stripping of the F information in a fattened branch qO′ is denoted by |qO′|. The follo-
wing notation describes the relevant retrieval of the F information from a fat branch of F ′ :
if rI ′ = q•′ valof c′, if (x′, c′, q′′) ` rI ′, and if (d′, w′) is the enabling of c′ in x′, then rI ′

has a unique prefix ending with valof d′ 〈is w′, rO〉, and we write we write rI ′ ↪→ rO. In the
case that c′ is initial, we write rI ′ ↪→ ε.

The states of the machine are either pairs of a branch of F ′′ and a fattened branch of F ′,
or triples of a branch of F ′′, a fattened branch of F ′, and a branch of F . We highlight the
component of the machine that has control at any step by boxing it. The initial state is
( ε , ε).

23



Abstract machine for composition

(1) (x, r′′) ` rO′′ ` r′′d′′

( rO′′ , r0′) −→ ( rO′′ request d′′ , rO′)
Opponent interrogates F ′′

(2) q•′′ = rO′′ request d′′

( q•′′ , r0′) −→ (q•′′, r0′ request d′′ )
F ′′ forwards the question to F ′

(3)
|q•′| u′ ∈ F ′

(q•′′, q•′ ) −→ (q•′′, q•′ u′ )
F ′ answers the question

(4)
rO′ = q•′ output v′′

(q•′′, rO′ ) −→ ( q•′′ output v′′ , rO′)
F ′ forwards the answer to F ′′

24



Abstract machine for composition (continued)

(5)
rI ′ = q•′ valof c′ rI ′ ↪→ rO

(q•′′, rI ′ ) −→ [q•′′, rI ′, rO request c′ ]
F ′ forwards the answer to
the appropriate branch of F

(6) q• u ∈ F

[q•′′, rI ′, q• ] −→ [q•′′, rI ′, q• u ]
F answers the question

(7) rO = q• output v′

[q•′′, rI ′, rO ] −→ (q•′′, rI ′ 〈is v′, rO〉 )
F forwards the answer
and its branch to F ′

25



Abstract machine for composition (end)

(8) rI = q• valof c (x, q′′) ` q•′′ (c, v) ∈ x

[q•′′, rI ′, rI ] −→ [q•′′, rI ′, rI is v ]
The branch of F ′′
already knows the value of c
(call-by-need)

(9) rI = q• valof c (x, q′′) ` q•′′ c ∈ A(x)

[q•′′, rI ′, rI ] −→ [ q•′′ valof c , rI ′, rI ]
F forwards the answer to F ′′

(10) rI ′′ = q•′′ valof c (c, v) ∈ EM

[ rI ′′ , rI ′, rI ] −→ [ rI ′′ is v , rI ′, rI ]
Opponent interrogates F ′′

(11) q•′′ = rI ′′ is v

[ q•′′ , rI ′, rI] −→ [q•′′, rI ′, rI is v ]
F ′′ forwards the question to F

26



Primitive recursive program schemes (p.r.s.)

Primitive recursive program schemes are defined as formal terms genera-
ted as follows :

(i ) λ~x.0 is a p.r.s. of arity n (where n is the length of ~x) ;

(ii) S is a p.r.s. of arity 1 ;

(iii) πni is a p.r.s. of arity n (for all i, n s.t. 1 ≤ i ≤ n) ;

(iv) if f is a p.r.s. of arity n and if g1, . . . , gn are p.r.s.’s of arity m then
h = f ◦ 〈~g〉 is a p.r.s. of arity m ;

(v) if g, h are p.r.s.’s of arities n, n+ 2, respectively, then rec(g, h) is a
p.r.s. of arity n+1.

27



Function associated with a primitive recursive scheme

Every primitive recursive scheme. f of arity m defines a function [f ] from
Nm to N.

All cases but rec are pretty obvious (constant 0, successor, projection, tu-
pling and composition). The meaning of rec(g, h) is given as follows (pri-
mitive recursion !) :

rec(g, h)(0, ~y) = g(~y)
rec(g, h)(Sx, ~y) = h(x, rec(g, h)(x, ~y), ~y)

28



Sequential algorithm associated with a primitive recursive scheme

Proposition. Every p.r.s. f of arity m gives rise to a sequential algorithm
[[f ]] from (NL)

m to NL, in such a way that we always have

[[f ]]•(Sn1(0), . . . , Snm(0)) = [f ](n1, . . . , nm)

As before, we label the output (resp. i-th input) cells as c′n (resp. cn.i).

We define [[f ]] by induction. For the case (iv), we use composition of se-
quential algorithms, and tupling. We detail all other cases in the next two
slides :

- We define [[λ~x.0]], [[S]] and [[πi]] as programs.

- We give the definition of [[rec(f, g)]] through an abstract machine (as we
have done already for composition + tupling, cf. previous slides).

29



The sequential algorithms for constant 0, successor, and projections

[[λ~x.0]] = request c′0 output 0

[[S]] = request c′0 output S request c′1 valof c0 is
0 7→ output 0

S 7→ output S request c′2 valof c1 is

{
0 7→ output 0
. . .

[[πi]] = request c′0 valof c0.i is

{
0 7→ output 0
S 7→ output S request c′1 valof c1.i . . .

30



Abstract algorithm for primitive recursion

[[f ]](⊥, ~y) = valof c0.1

[[g]](~y) = w

[[f ]](0, ~y) = w

[[h]](x, f(x, ~y), ~y) = output v′

[[f ]](Sx, ~y) = output v′

[[h]](x, f(x, ~y), ~y) = valof ci.1

[[f ]](Sx, ~y) = valof ci+1.1

[[h]](x, f(x, ~y), ~y) = valof ci.n (n ≥ 3)

[[f ]](Sx, ~y) = valof ci.(n− 1)

[[h]](x, f(x, ~y), ~y) = valof ci.2 [[f ]](x, ~y) = valof cj.n (n ≥ 2)

[[f ]](Sx, ~y) = valof cj.n

31



Abstract machine for primitive recursion : preparations

We set f = rec(g, h). We (pre)tag the different copies of NL as follows :

g : NL.1× . . .×NL.n→ N′L

h : N�L ×N?
L ×NL.1× . . .×NL.n→ N′L

f : N�L ×NL.1× . . .×NL.n→ N′L

We shall write simply request , instead of request c′i (since i is always uni-
quely determined).

32



Abstract machine for primitive recursion : initialisation

request−→ ?~∅()

?~∅()
valof c�0−→ !~∅()

!~∅()
is 0−→ ?~∅({request })

!~∅()
is S−→ ?~∅([S(⊥), request ])

33



Copycat with g

?~y({qb}.S) −→ ?~y({qb u}.S) (qb u ∈ [[g]])

?~y({qb output v})
output v−→ !~y({qb output v})

!~y({qb output v})
request−→ ?~y({qb output v request })

?~y({qb valof ci.j}.S) −→ ?~y({qb valof ci.j is v}.S) ((ci.j, v) ∈ ~y)

?~y({qb valof ci.j}.S)
valof ci.j−→ !~y({qb valof ci.j}.S) (ci.j ∈ A(~y))

!~y({qb valof ci.j}.S)
is v−→ ?~y∪{(ci.j,v)}({q

b valof ci.j is v}.S)

34



Notation for stack update

S[← v] is defined as follows :

([x, qr].k.S)[← v] = [x[← v], qr].k.S[← v]

with {
Sn(⊥)[← 0] = Sn(0)
Sn(⊥)[← S] = Sn+1(⊥)

35



Copycat with h

?~y([x, q
r].S) −→ ?~y([x, q

r u].S) (qr u ∈ [[h]])

?~y([x, q
r valof ci.j].S) −→ ?~y([x, q

r valof ci.j is v].S) ((ci.j, v) ∈ ~y)

?~y([x, q
r valof ci.j].S)

valof ci.j−→ !~y([x, q
r valof ci.j].S) (ci.j ∈ A(~y))

!~y([x, q
r valof ci.j].S)

is v−→ ?~y∪{(ci.j,v)}([x, q
r valof ci.j is v].S)

?~y([x, q
r valof c�i ].S) −→ ?~y([x, q

r valof c�i is v].S) (c�i , v) ∈ x)

?~y([x, q
r valof c�i ].S)

valof c�
i+|S|−→ !~y([x, q

r valof c�i ].S) (c�i ∈ A(x))

!~y([x, q
r valof c�i ].S)

is v−→ ?~y([x ∪ {(c�i , v)}, q
r valof c�i is v].S[← v])

?~y([x, q
r output v])

output v−→ !~y([x, q
r output v])

!~y([x, q
r output v])

request−→ ?~y([x, q
r output v request ])

36



Recursive calls

?~y([S(0), q
r valof c?i ].S) −→ ?~y({request }.0.[S(0), qr valof c?i ].S)

?~y([S(S(z)), q
r valof c?i ].S)

−→ ?~y([S(z), request ].0.[S(S(z)), q
r valof c?i ].S)

?~y([S(⊥), qr valof c?i ].S)
valof c�|S|−→ !~y([S(⊥), qr valof c?i ].S)

!~y([S(⊥), qr valof c?i ].S)
is 0−→ ?~y({request }.0.[S(0), qr valof c?i ].S[← 0])

!~y([S(⊥), qr valof c?i ].S)
is S−→ ?~y([S(⊥), request ].0.[S(S(⊥)), qr valof c?i ].S[← S])

37



Returns to the recursive calls

?~y([x, q
r
1 output S].j.[y, q

R
2 valof c?i ].S)

−→ ?~y([x, q
r
1 output S request ].j +1.[y, qR2 valof c?i ].S) (j < i)

?~y([x, q
r
1 output v].i.[y, qR2 valof c?i ].S) −→ ?~y([y, q

R
2 valof c?i is v].S)

?~y({qb output S}.j.[y, qR2 valof c?i ].S)

−→ ?~y({qb output S request }.j +1.[y, qR2 valof c?i ].S) (j < i)

?~y({qb output v}.i.[y, qR2 valof c?i ].S) −→ ?~y([y, q
R
2 valof c?i is v].S)

38



Illustration : lazy left addition

We define addlL = rec(π11, S ◦ 〈π
3
2, )〉. One can compute (coinductively)

[[addlL]] = B0, where

Bi = request c′i valof ci.1 is

 0 valof ci.2 is

{
0 output 0
S Di

S output S Bi+1

where

Di = valof ci.2 is

{
0 output 0
S output S Di+1

We have that, say

[[addlL]] yields


Sω(⊥) on (Sω(⊥),⊥)
S2(0) on (S(0), S(0)
Sω(⊥) on (S(0), Sω(⊥)

39



Colson’s ultimate obstinacy theorem

Colson’s ultimate obstinacy theorem says that such a behaviour cannot be
ottained with a primitive recursive scheme.

Theorem Let f be a primitive recursive scheme of arity n. Than all infinite
branches q in [[f ]] are such that, for i ∈ {1, . . . n} fixed, {n | valof cn.i occurs in q}
is finite, except for a unique i0 (the obstinate sequentiality index !).

In other words, from a certain point on, any infinite branch q is an interlea-
ving of an infinite sequence (with fixed i0)

valof cp.i0 is vp valof cp+1.i0 . . . valof cp+q.i0 is vp+q . . .

and a finite or infinite sequence

request c′r output v
′
r . . . request c

′
r+s . . .

40



An algorithm that is not primitive recursive

Consider the following (total) recursive definition for computing the mini-
mum of two natural numbers :

min(Sm,Sn) = min(m,n) + 1
min(0, n) = 0
min(m,0) = 0

Since sequential algorithms are also a model for general recursive defini-
tions, we can compute its interpretation :

Bi = request c′i valof ci.1 is


0 output 0

S valof ci.2 is

{
0 output 0
S output S Bi+1

the interaction of which with (Sω(⊥), Sω(⊥)) induces the highlighted infi-
nite branch, that contains an infinite number of calls to the first argument
of min and an infinite number of calls to its second argument.

41



Sketch of proof of ultimate obstinacy (f ◦ 〈~g〉)

Let q′′ be an infinite branch of [[f ◦ 〈~g〉]]. Its construction induces the
construction of a branch q′ of [[f ]]. There are two cases :

(1) q′ is finite, and then must end with a valof c′p.i. Then the infiniteness
of q′′ is fed exclusively by a (thus infinite) branch of [[gi]], trying to answer
the request for c′p. Obstinacy follows from that of [[gi]].

(2) q′ is infinite. Then the obstinacy of [[f ]] induces an infinite branch in
[[gi0]], whose obstinacy in turn yields the obstinacy of q′′.

42



Proof of ultimate obstinacy (primitive recursion case)

Consider an infinite branch b of f . Here is the architecture of the proof :

1. b projected to NL yields 0.

2. b projected to NL yields Sn(⊥) or Sω(⊥). Then the computation
visits exactly one branch bh of h (and possibly revisits parts of it).

(a) The branch bh is infinite with index j.

i. bh contains finitely many output v; request ’s.

ii. bh contains infinitely many output v; request ’s.

(b) The branch bh is infinite with index �.

(c) The branch bh is finite.

(d) The branch bh is infinite with index ?.

3. b projected to NL yields Sn(0) (n > 0) (with two subcases (a) and
(b)). 43



Case 1

The computation takes entirely place in g, i.e. the machine states are all
the form

{qg} ,

and the obstinacy of b follows immediately from the copycat execution of
the machine.

44



Case 2 (a)

The machine reaches some state

[Sm(⊥), qh].S

such that the rest of bh consists only of

output v request ’s and valof ci.j is v’s .

45



Case 2 (a) i

By taking qh long enough above, we can assume that the rest of bh consists
of

valof ci.j is S valof ci+1.j is S . . . .

Then, after exhausting the finite capacities of ~y, the machine behaves in
copycat regime :

?~y([S
m(⊥), qh valof ck.j].S)

valof ck.j−→ !~y([S
m(⊥), qh valof ck.j].S)

is vk−→ ?~y ∪{(ck.j,vk)}([S
m(⊥), qh valof ck.j] is vk.S)

...

which shows that b has index j .
46



Case 2 (a) ii

The machine has enough fuel to pop the stack entirely. [Note that no-
thing will be pushed on top of [Sm(⊥), qh] since the rest of bh does not
have any call to ?.] Thus we can assume that the stack S is empty, and
that the machine behaves in copycat regime, interleaving infinitely many
output S request ’s with infinitely many valof ck.j is S’s, which shows that b
has index j .

47



Case 2 (b)

This case is similar to the case 2 (a), with the only difference that when bh

contains finitely many output v; request ’s, the induced copycat is shifted by
the size of the stack.

48



Distribution of output S and of valof c?i in bh : growing stacks

We say that bh is i-OK if valof c?i occurs in bh and if the number of occur-
rences of output ’s in bh before valof c?i is > i. Suppose that bh is i-OK
up to some i. Then it is easily seen by induction on i that the machine
successfully reaches a state

[Sm(⊥), qh valof c?i is v]

after having passed through a state having a stack

[Sp(⊥), qh1outputS].0.[S
p+1(⊥), rh0valof c

?
0].1. . . . .i.[S

p+i+1(⊥), rhi valof c
?
i ]

of depth i+ 1, where qh1 output S, rh0valof c
?
0,. . ., rhi valof c

?
i are growing

prefixes of bh.

49



Distribution of output S and of valof c?i in bh : looping

Suppose moreover that bh is not i+ 1-OK. Then the machine reaches a
state

[Sp(⊥), rh valof c?i ][S
p+1(⊥), rh valof c?i ]

without contributing a new valof ci.j to b, since it is the same part of bh

which is revisited, and hence any such calls have thus been already made.
From there, the machine produces stacks of unbounded depth in a loop.

The key for these properties is that there is a “race” between the output ’s
and the valof c?i ’s of bh : enough output ’s must be issued ahead of the
valof c?i to prevent such a loop of recursive calls.

50



Case 2 (c) : analysis of bh

bh cannot end with a valof ci.j or a valof c�i , as computation would then
proceed and add an is v to bh.

bh contains valof c?0. Suppose not : then the stack remains always of depth
1, and the final move cannot be an output 0 because this would cause b to
be finite, not output S because the machine would then extend bh with a
request .

bh contains a valof c?i for which it is not i-OK. Suppose not, and let i be
maximum such that c?i occurs in bh, and rh be the prefix of bh ending with
c?i . Then the machine reaches [Sm(⊥), qh valof c?i is v], and using the
same reasoning as just above, we see that bh cannot end with an output .
Since, by the choice of i, no c?i occurs in the rest of bh, we again reach a
contradiction.

51



Case 2 (c)

Let i be such that bh is k-OK for all k < i and is not i-OK. Then by the
analysis carried out in the analysis of the distribution of output S and of
valof c?i in bh, the machine reaches stacks

[S(⊥), rh valof c?i ]. . . . [S
p(⊥), rh valof c?i ]

of unbounded depth. In this case bh ends with c?i (and this exhausts all the
possible cases for a finite bh), and the unboundedness of the stack results
in an infinite sequence of calls to � in b. Moreover, b ultimately contains
only these successive calls (together with the moves is S that follow them).
Hence b has index �.

52



Case 2 (d)

The preliminary analysis above shows that bh must be i-OK for all i, and
that, for all i, the machine passes through states of unbounded depth.
Hence in this case too b has index �.

[Note that since bh ultimately does not contain calls to .j, b does not either.]

53



Case 3

Ultimately, all what b contains are either output S request or valof c.j is v,
which all must be induced by h or g. Since the execution visits at most n
branches of h (each branch being guided by Si(0) for some 1 ≤ i ≤ n)
and one branch of g, one of these branches must be infinite.

54



Case 3 (a)

If there is a branch of h guided by Si(0) that is infinite and has ? as index, then the branch
of h guided by Si−1(0), or in case i = 1 the branch of g, must contain infinitely many
output and hence must be infinite. If i > 1, we consider in turn the index of the branch
guided by Si−1(0), and continuing in this way we find either an infinite branch bg of g or
an infinite branch bhk of h, in both cases with index j, and there are machine states

{qg}.k.[S(0), qh1].S or [Sk(0), qhk ].k.[S
k+1(0), qhk+1].S

where the rest of bg (resp. of qhk ) contains only outputs or calls to .j (together with the next

request or is moves), boh occurring infinitely many times. All the outputs are absorbed by

the infinite branch qh1 (resp. qhk+1), making the branch bg (resp. qhk ) the only contributor to

b, in the form of an infinite sequence of valof ci.j is S. [Note that the depth and the form

of the stack keep unchanged, since no call to ? is issued.] Therefore b is obstinate with j

as index.

55



Case 3 (b)

Otherwise let k be the largest such that the branch of h guided by Sk(0) is infinite, or if
all branches of h are finite let’s take the branch of g which then must be infinite. In both
cases the branch bhk or bg that we just defined is obstinate with index j. Moreover it can’t
contain infinitely many outputs unless k = n, as there are only finitely many calls ? issued
by bhk+1 or bh1. So, if k < n, one reaches eventually machine states of the form

[Sk(0), qhk ].[S
k+1(0), qhk+1].S or{qg}.[S(0), qh1]

from which the rest of bhk or bg induces infinite copycat of calls to .j, thus exhibiting j as

index for b. If k = n, the machine reaches a state [Sn(0), qhn] from which the rest of bhn
induces a copycat exhibiting .j as index of b (with possibly outputs interleaved with the

calls to .j, as dictated by bhn).

56


