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“Provability” versus “proofs”

• Games to reason about programs

• Programs as strategies
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Model-checking 1/2

Satisfiability problem for various logics (modal,

temporal, µ) for automata or concurrent

systems

⇔

Existence of winning strategies in associ-

ated games.
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Model-checking 2/2

Also ⇔ (non-)emptyness problem for lan-

guages recognized by various kinds of au-

tomata on (infinite) words or trees.

Also, bisimulation in concurrency theory.
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Game semantics 1/2

Strategies as proofs / programs / morphims.

Composition corresponds to cut elimination

/ normalization. Games semantics is very

active since a decade.
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Game semantics 2/2

New results in the semantics of program-

ming languages: simple and direct seman-

tics for programming features such as con-

trol or references,

Full abstraction results connecting denota-

tional and operational semantics tightly.
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PROLOGUE 1/13

A theorem on lattices

Joyal (1997) used games to give a nice

proof of the following theorem (Whitman

1947): The free lattice L over a partial or-

der X (with i : X → L) is characterized

by
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PROLOGUE 2/13

- L is a lattice and i is monotonous

- If u1 ∧ u2 ≤ v1 ∨ v2, then u1 ∧ u2 ≤ v1 or

u1 ∧ u2 ≤ v2 or u1 ≤ v1 ∨ v2 or u2 ≤ v1 ∨ v2

- If i(x) ≤ v1∨v2, then i(x) ≤ v1 or i(x) ≤ v2

- If u1∧u2 ≤ i(x), then u1 ≤ i(x) or u2 ≤ i(x)

- If i(x) ≤ i(y), then x ≤ y

- L is generated by i(X)
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PROLOGUE 3/13

Uniqueness easy. For existence, construct

a suitable preorder on the following set of

terms:

x ∈ X

x ∈ T (X) V ∈ T (X) F ∈ T (X)

A1 ∈ T (X) A2 ∈ T (X)

A1 ∧A2 ∈ T (X)

A1 ∈ T (X) A2 ∈ T (X)

A1 ∨A2 ∈ T (X)
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PROLOGUE 4/13

The preorder is defined by: A ≤ B if and

only if (A, B) is a winning position in some

graph game.

The set of nodes is T (X)× T (X).
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PROLOGUE 5/13

Edges:

(A1 ∨A2, B) → (A1, B) (A1 ∨A2, B) → (A2, B)
(A, B1 ∧B2) → (A, B1) (A, B1 ∧B2) → (A, B2)

(A1 ∧A2, B1 ∨B2) → (A1, B1 ∨B2) (A1 ∧A2, B1 ∨B2) → (A2, B1 ∨B2)
(A1 ∧A2, B1 ∨B2) → (A1 ∧A2, B1) (A1 ∧A2, B1 ∨B2) → (A1 ∧A2, B2)
(A1 ∧A2, F ) → (A1, F ) (A1 ∧A2, F ) → (A2, F )
(V, B1 ∨B2) → (V, B1) (V, B1 ∨B2) → (V, B2)
(A1 ∧A2, x) → (A1, x) (A1 ∧A2, x) → (A2, x)
(x, B1 ∨B2) → (x, B1) (x, B1 ∨B2) → (x, B2)
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PROLOGUE 6/13

Each node has a polarity ∈ {P , O, N} (Player,

Opponent, Neutral).

O
(A1 ∨A2, B)

O
(F, B)

O
(A, B1 ∧B2)

O
(A, V )

P

(A1 ∧A2, B1 ∨B2)
P

(V, B1 ∨B2)
P

(V, F )
P

(A1 ∧A2, F )
P

(x, B1 ∨B2)
P

(A1 ∧A2, x)
P

(x, F )
P

(V, x)
N

(x, y)
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PROLOGUE 7/13

A strategy is a full subgraph S s.t.

- If
P

(A, B)∈ S, then S contains at least one

edge out of (A, B).

- If
O

(A, B)∈ S, then S contains all edges of

G out of (A, B).

- If
N

(x, y)∈ S, then x ≤ y in X.
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PROLOGUE 8/13

We say that (A, B) is a winning position if

(A, B) belongs to some strategy. We then

write A ≤ B.
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PROLOGUE 9/13

A proof is a strategy which satisfies:

- In the first condition, replace “at least

one” by “exactly one”.

- There is a root (an edge from which all

other edges can be reached following (ori-

ented) paths of the strategy).
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PROLOGUE 10/13

Lemma 1. (A, B) is winning iff there is

proof rooted in (A, B).

Lemma 2. A1 ∧ A2 is a greatest lowert

bound of A1 and A2, etc... .

Lemma 3. ≤ is transitive.
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PROLOGUE 11/13

(1) Easy (induction on formulas)

(2) Use the presentation by proofs

(3) Use the presentation by strategies. The

composition of two strategies S and T wit-

nessing A ≤ B and B ≤ C is:

S ◦T = {(x, z) | ∃ y (x, y) ∈ S et (y, z) ∈ T} .
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PROLOGUE 12/13

This example embodies ideas of using games

for both

- model-checking (we are interested in the

mere existence of strategies for inequality

predicates) and

- game semantics: we want a compositional

semantics: combine strategies to build other

strategies.
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PROLOGUE 13/13

The situation proofs / strategies somehow

matches the operational / denotational dis-

tinction in the semantics of programming

languages: Proofs compose by normaliza-

tion / cut-elimination / interaction, while

strategies compose as mathematical func-

tions. (Cf. also functions as relations vs

functions as algorithms).
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AUTOMATA, LOGICS . . .

Büchi (1962): Two-way correspondence be-

tween automata on infinite words and monadic

second order logic over infinite words α:

∀α (α |= φ ⇔ A accepts α)

This logic is decidable.
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and GAMES

second order monadic parity

logic ↔ automata
l

parity

games

McNaughton, Rabin, Gurevitch-Harrington,

Zielonka, Thomas,. . .
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Determinacy

Parity games are determined, and who wins

is decidable.

A nice proof of Santocanale goes along the

hypothenuse of the above triangle (but the

target is a logic of fixed points).
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Parity automata and fixpoints 1/8

A (partial) game is

- an oriented graph G = (G0, G1)

- the nodes have a polarity (ε : G0 → {P , O, N},
if ε(x) = N , then x is terminal)

If ε−1(N) = ∅, the game is called total.
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Parity automata and fixpoints 2/8

One also gives a set WP of infinite winning

paths for P (WO is its complement).

Winning strategy for P (resp. O) = strat-

egy all of whose infinite paths ∈ WP (resp.

∈ WO). Winning position = belongs to a

winning strategy.
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Parity automata and fixpoints 3/8

Given X ⊆ ε−1(N), given S(x) ⊆ G0 and

OPx ∈ {∧,∨} for all x ∈ X, define the games

µS.G[X] (short for µS,OP .G[X]) , νS.G[X] :

- add x → g for all x ∈ X, g ∈ S(x),

- change polarity of x ∈ X to P (resp. O)

if OPx = ∨ (resp. OPx = ∧).
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Parity automata and fixpoints 4/8

The two games differ only in the definition

of winning:

- µS.G[X]: the winning paths of P are those

infinite paths in the new graph which even-

tually are winning for P in the old.

- νS.G[X]: (dual) the . . . of O in the new

graph which eventually . . . for O in the old.
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Parity automata and fixpoints 5/8

G[X ∩ A] defined by changing the polarity

of x ∈ X to P (resp. O) if x 6∈ A (resp.

x ∈ A).

Lemma 1. If all games G[X ∩ A] are de-

termined, then µS.G[X] (resp. νS.G[X]) is

determined and its set of winning positions

is obtained as a least (resp. greatest) fixed

point of a monotonous operator.
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Parity automata and fixpoints 6/8

A parity game is a (total) game in which

the nodes also have a colour (p : G0 →
{1, . . . , n}) and the colours have a parity (χ :

{1, . . . , n} → {P,O}).
WP consists of those paths such that if m is

the maximum colour visited infinitely often

along the path, then χ(m)=P.
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Parity automata and fixpoints 7/8

Lemma 2. Each parity game G can be

written as QSn. · · · .QS1
.G0[X1] · · · [Xn] where

- Xi is the set of nodes of colour i,

- Si(x) is the set of successors of x in G,

- OPx = ∨ (resp. OPx = ∧) if x has polarity

P (resp. O),

- QSi
= µ (resp. QSi

= ν) if χ(i) =P (resp.

χ(i) =O).
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Parity automata and fixpoints 8/8

Determinacy of parity games follows from

Lemmas 2 and 1.
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Proof of lemmas 1 and 2 (hints) 1/3

WPP [G] =def {g ∈ G0 | ∃ a winning strategy

for P containing g}

Lemma A: WPP [G] ∩WPO[G] = ∅.
Lemma B: A path γ that visits X infinitely

often is winning in µS.G[X].

Lemma C: A path that is eventually win-

ning in G[X] is winning in νS.G[X].
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Proof of lemmas 1 and 2 (hints) 2/3

FP(A) =def {g ∈ G0 |
(εg = P ⇒ ∃ g′ (g → g′ and g′ ∈ A))
and (εg = O ⇒ ∀ g′ (g → g′⇒ g′ ∈ A))}

When a play reaches FP(A), P can force

the play to go into A.

The operator of Lemma 1 is

A 7→ WPP [G[X ∩ FP(A)]].
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Proof of lemmas 1 and 2 (hints) 3/3

A glimpse of the proof of Lemma 1. If Z is

a postfixpoint, i.e., Z ⊆ WPP [G[X∩FP(Z)]],

then construct the following strategy: play

according to G[X ∩FP(Z)], until eventually

reaching X ∩ FP(Z), then force the play to

come to Z, and continue to play according

to G[X ∩ FP(Z)], etc...
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GAME SEMANTICS 1/2

The goal is to make semantics akin to syn-

tax and to model computation as interac-

tion between

a system
a program

P


and


its environment
its context
O
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GAME SEMANTICS 2/2

while keeping a suitable level of mathemat-

ical abstraction (categories), and hence the

possibility to use powerful reasoning tools.

Abramsky-Jagadeesan-Malacaria, Hyland-Ong

(1993)
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PRECURSORS

- Dialogue games of Lorenzen, Lorenz, Felscher

(1960)

- Sequential algorithms of Berry and Curien

(1978) (like M. Jourdain, we did not know

that we were talking about games and strate-

gies!)

- Object spaces model of Reddy (1996)
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