
Categories

Pierre-Louis Curien

πr2, Preuves, Programmes et Systèmes

INRIA, University Paris 7, CNRS

April 21, 2014

What for?

Category theory provides a way to organise mathematical struc-

tures in general, and in particular the mathematical structures

involved in the design, the understanding, and even the imple-

mentation of programming languages.

And this week’s lectures are very much about programming lan-

guages (high and low-level, pure an “impure”).

1

Examples of categories

• sets and functions between them Set

• sets and partial functions

• sets and relations REL

• posets and monotonous functions between them

• topological spaces and continuous functions

• groups (or rings, fields, Lie algebras..) and morphisms between

them

• categories and functors Cat

• functors between two fixed categories and natural transforma-

tions between these functors

2

This morning (lectures 1 and 2): basic definitions and

properties

• categories

• functors

• natural transformations

• presheaves and Yoneda lemma + embedding

• 2-categories

• adjoint functors, equivalences of categories

• monads (and comonads), Kleisli categories, algebras and coal-

gebras

• distributive laws

I’ll use string diagrams to provide graphical proofs

3

Other important notions

• limits and colimits

• Kan extensions

• ends and coends

• enriched categories

• bicategories, n-categories (strict and weak)

Up to ends and coends included, you can consult my notes

Category theory: a programming language-oriented intro-

duction

on my web page (google Pierre-Louis Curien)

4

Preview: Lecture 3

We shall define cartesian closed categories (CCC), we shall present:

• the syntax of categorical combinators

• the compilation of the λ-calculus into this syntax

• the execution of the categorical code in an abstract machine,

the CAM (Categorical Abstract Machine) (Cousineau-Curien-

Mauny)

We’ll show a conservative extension result: every category em-

beds fully and faithfully in the free CCC over it. Moreover, the

proof “contains” a proof of termination of the CAM (Lafont)

5

Preview: Lecture 4

Where categories meet computation: further instances

• normalisation by evaluation

• coherence in monoidal categories

• monads and effects (see Alex’s lectures!)

6

Preview: Lectures 5 and 6

• A short introduction to linear logic

• Denotational semantics for intuitionistic, linear, (and classi-

cal, not covered here) logic

• The full abstraction problem

• denotational models that arose in the quest of full abstrac-

tion: continuity, stability, sequentiality / game semantics

7

Category = multi-graph + monoid

A category C is a structure consisting of objects A : C, of mor-
phisms f : A → B, with the following operations and equations
on morphisms:

idA : A→ A

f : A→ B g : B → C

g ◦ f : A→ C

f : B → A g : C → B h : D → C

(f ◦ g) ◦ h = f ◦ (g ◦ h) : D → A

f : A→ B

f ◦ idA = f : A→ B

f : A→ B

idB ◦ f = f : A→ B

Notation: Obj (C) for the collection of objects, HomC(A,B) or
C[A,B] for the collection of morphisms from A to B (dependent
type!)

8

Examples of categories (three last coming next)

• a monoid is a one-object category

• a preorder is a category (cf. homotopy type theory, where sets

are special groupoids)

• sets and functions between them Set

• sets and partial functions

• sets and relations REL

• posets and monotonous functions between them
...

• the dual of a category is a category

• categories and functors Cat (next)

• functors between two fixed categories and natural transforma-

tions between these functors (next after next)

9

Dual properties

If C, we deine Cop as follows:

Obj (Cop) = Obj (C) Cop[A,B] = C[B,A]

idop = id f ◦op g = g ◦ f .
Given a property P , one defines its dual P op by: P op holds in C

iff P holds in Cop.

Example: mono is dual to epi:

f is mono if whenever f ◦ g = f ◦ h then g = h

f is epi if whenever g ◦ f = h ◦ f then g = h

10

Functors

Let C, D be categories. A functor F : C → D is a graph

morphism that preserves the operations:

A : C
FA : D

f : A→ B

Ff : FA→ FB

F idA = idFA : FA→ FA

f : B → C g : A→ B

Ff ◦ Fg = F (f ◦ g) : FA→ FC

11

Examples of functors

• Forgetful functors, e.g. U : Top→ Set
• the geometric realisation functor from simplical sets to topo-
logical spaces
• the nerve functor from categories to simplicial sets
• the singular homology functor from topological spaces to the
category of (chain complexes of) groups
...
• Homfunctor HomLeftA = C[, A] : Cop → Set:

HomLeft(B) = C[B,A]
HomLeft(f)(g) = g ◦ f (f : C → B , g ∈ HomLeft(B))

and similarly C[B,] : C→ Set
• The projection functors C×D→ C and C×D→ D
• Functor ×A : C→ C in a category C with products (tomorrow)

12

Natural transformations

Let F,G : C → D. A natural transformation µ : F → G is a
family of morphisms {µA : FA→ GA}A:C (called the components
of µ) such that, for all A,B, f : A → B, the following square
commutes:

Gf ◦ µA = µB ◦ Ff

Example of a natural transformation. Take the functor List :
Set→ Set. Then the family revX : List(X)→ List(X) (list revers-
ing) is a natural transformation.
Natural transformations compose vertically:

idA = idFA (ν ◦ µ)A = νA ◦ µA
Thus we have a category DC whose objects are the functors F :
C→ D, and DC[F,G] is the collection of natural transformations
µ : F → G.

13

Natural transformations as 2-morphisms

Natural transformations also compose horizontally.
1) one defines

µH : F ◦H → G ◦H by (µ ·H)A = µHA
Kµ : K ◦ F → K ◦G by (K · µ)A = K(µA)

2) for F, F ′ : C→ C′, G,G′ : C′ → C′′, µ : F → F ′, ν : G→ G′, we
define ν · µ : GF → G′F ′ as follows (by naturality of ν):

(νF ′) ◦ (Gµ) = ν · µ = (G′µ) ◦ (νF)

3) for F, F ′, F ′′ : C → C′, G,G′, G′′ : C′ → C′′, µ : F → F ′,
µ′ : F ′ → F ′′, ν : G → G′ and ν′ : G′ → G′′, one proves the
following, called exchange law:

(ν′ ◦ ν) · (µ′ ◦ µ) = (ν′ · µ′) ◦ (ν · µ)

This says that pasting diagrams make sense.

14

n-categories

2-categories have 0-morphisms, 1-morphisms that compose, 2-

morphisms that compose in two ways in a compatible way.

Cat forms a 2-category

2-categories with one 0-morphism only are (strict) monoidal cat-

egories. We’ll study them soon

1-categories have 0-morphisms (the objects), and 1-morphisms

3-categories have 0-morphisms, 1-morphisms, 2-morphisms, and

3-morphisms (that compose in 3 different ways) etc...

15

Weak 2-categories

But once you have 2-morphisms around, you can discuss a weaker
form of associativity for 1-morphisms. Instead of requiring

(h ◦ g) ◦ f = h ◦ (g ◦ f)

we ask only the existence of a (natural) invertible 2-morphism

α : (h ◦ g) ◦ f → h ◦ (g ◦ f)

and the same for the f ◦ id and id ◦ f . These natural transforma-
tions have to satisfy some laws, called coherence laws.

This leads to bicategories, a.k.a. weak 2-categories, and then
weak n-categories: the problem becomes the unmanageability of
the coherence laws when n grows.

Bicategories with one 0-morphism only are monoidal categories.

16

Presheaves

Let C be a category. The functors F : Cop → Set are called

(contravariant) presheaves over C.

Examples of presheaves:

• the hom functors C[, C]: they are called the representable

presheaves.

• If C is X∗ for some alphabet X, with the prefix ordering, then

a presheaf over X is a synchronisation forest (→ concurrency

theory)

17

Yoneda lemma

For any presheaf F we have natural bijections:

FC ∼= SetC
op

[C[, C], F] .

See my notes for a graphical proof.

Application: SetC
op

has function spaces (anticipating lecture 3).
By Yoneda we know that (GF)(C) must be in bijective corre-
spondence with

SetC
op

[C[, C], GF]

which by uncurrying must be in bijective correspondence with

SetC
op

[C[, C]× F,G]

Thus we define (cf. Kripke semantics)

(GF)(C) = SetC
op

[C[, C]× F,G]

18

Yoneda embedding

But the most important application of Yoneda lemma is

The functor Yon : C → SetC
op

is full and faithful, where Yon is

defined by

Yon(C) = C[, C]

Proof: By specialising the Yoneda lemma to F = C[, D] =

Yon(D), we get a bijection

C[C,D] = FC ∼= SetC
op

[C[, C], F] = SetC
op

[Yon(C),Yon(D)]

19

Adjoint functors: definition 1

Let C, C′ be categories, and let G : C′ → C. Then we say that G

has a left adjoint if for every object C : C there exists an object,

denoted as FC, together with a morphism ηC : C → GFC, such

that for every morphism g : C → GC′ in C there exists a unique

morphism f : FC → C′ in C’ such that

Gf ◦ ηC = g

Example: the forgetful functor U from the category of monoids

and monoid morphisms to Set has a left adjoint (the free monoid

construction).

20

Adjoint functors: definition 2

An adjunction between two categories C,C′ is a quadruple (F,G, η, ε),

where F : C→ C′ and G : C′ → C are functors and η : idC → GF

(the unit) and ε : FG → idC′ (the counit) are natural transfor-

mations such that

Gε ◦ ηG = idG and εF ◦ Fη = idL

Notation F a G

Exercise: give a graphical proof of the equivalence of the two

definitions.

21

Examples of adjoint functors

• Free constructions (cf. above)

• Let 1 be the category with one object and one morphism (the

identity). We say that C has a terminal object if the functor

F : C→ 1 has a right adjoint.

• Let ∆ : C → C × C be the diagonal functor. We say that C

has binary products if ∆ has a right adjoint, denoted as ×
• Let C be a category that has binary products. We say that it

has exponents if for every object A the functor ×A has a right

adjoint, denoted A.

• Let I be a (small) category. We say that it has all limits of

shape I if the diagonal functor ∆ : C→ CI has a right adjoint

22

Some properties of adjoint functors

A functor is called full (resp. faithful) if its surjective (resp.

injective) on morphisms.

For an adjunction F a G the following holds:

1) G is faithful if and only if every component of the counit is

an epi.

2) G is full if and only if every component of the counit is a split

mono (i.e., has a left inverse)/

3) G is full and faithful if and only if the counit is invertible.

Dually, F is faithful (resp. full) if every component of the unit is

mono (resp. split epi), and is full and faithful iff η is invertible.

23

Equivalences of categories

The following properties of a functor F : C→ C′ are equivalent:

1) There exists a functor G : C′ → C and two natural equivalences

ι : GF → idC and ι′ : FG→ idC′.

2) F is part of an adjunction F a G in which the unit and the

counit are natural isomorphisms.

3) F is full and faithful and ∀C′ : C′ ∃C ∈ C (C′ ∼= FC).

24

Monads

Let C be a category. A monad on C is a triple (T, η, µ) where
T : C→ C, η : idC → T (the unit) and µ : TT → T (the multipli-
cation), and where η and µ satisfy the following three equations:

µ ◦ (µT) = µ ◦ (Tµ) µ ◦ (ηT) = idT µ ◦ (Tη) = idT

Dual notion: comonad

Every adjunction (F : C → C′) a (G : C′ → C) gives rise to a
monad on C (and to a comonad on C′).

The monads arising from the free construction adjunctions are
(quotient) term monads (unit says that variables are terms, mul-
tiplication is substitution)

25

Examples of monads

• The powerset functor on Set

• The list functor on Set

• Let S be a fixed set. The functor (×S)S gives rise to a monad

on Set (state monad)

• Let R be a fixed set. The functor RR gives rise to a monad

on Set (continuation monad, cf. Alexandre’s lectures)

26

Kleisli categories

Motivation: interpret programs Γ ` M : A with effects as mor-

phisms Γ→ TA (Moggi).

But how to compose f : A→ TB and g : B → TC? As follows:

g ◦K f = µ ◦ Tg ◦ f

This gives rise to the Kleisli category CT of a monad T : C→ C:

A : C
A : CT

f ∈ C[A, TB]

f ∈ CT [A,B]

Identities are provided by the unit η.

27

Strong monads

Motivation: This is not enough to interpret programs with ef-

fects. How to interpret M(N1, N2) where

M : (A×B)→ C N1 : A N2 : B

We need a morphism TB × TC → T (B × C). Such a morphism

(actually two, depending on the order of evaluation: N1 before

N2, or conversely) can be obtained if we have a natural trans-

formation (called strength)

sB : A× TB → T (A×B)

satisfying some properties: reformulating it as s : FT → TF , we

ask s to be a distributive law.

28

Distributive laws

Let C be a category. A (monad-functor) distributive law on C is

a natural transformation λ : TF → FT , where F is an endofunctor

on C and (T, η, µ) is a monad on C, that satisfies the following

two equations:

λ ◦ ηF = Fη λ ◦ µF = Fµ ◦ λT ◦ Tλ

Equipping a functor with a distributive law is exactly what allows

to lift it to the category of T -algebras (defined next).

29

Algebras over a monad

Let T : C → C be a monad. A T -algebra with carrier A is a

morphism α : TA→ A such that

α ◦ ηA = idA α ◦ µA = α ◦ Tα

This gives rise to the category CT of T -algebras and T -algebras

morphisms (morphisms of C between the carriers that commute

with the algebra structure).

30

Adjunctions arising from monads

Let T be a monad. Both the Kleisli category and the category

of T -algebras give rise to adjunctions (whose associated monad

is T)

• One can coerce f ∈ C[A,B] as η ◦ f : A → TB. This defines a

functor C→ CT , which has a right adjoint.

• The forgetful functor CT → C that maps (A,α) to A has a left

adjoint.

31

Cartesian closed categories (finite products + exponents)

• An object A in a category C is terminal if ∀B ∈ C ∃!f : B → A.

We write A = 1 and f =!.We denote a terminal object with 1

and with !B the unique morphism from B to 1.

• Let A,B be two objects in a category C. A product of A,B

is a triple (C, π : C → A, π′ : C → B) such that for any triple

(D, f : D → A, g : D → B) there exists a unique h : D → C such

that π ◦ h = f and π′ ◦ h = g. We write C = A×B and h = 〈f, g〉
(the pair of f, g).

• Let C be a category that has binary products. An exponent

of two objects A,B is a pair (C, ev : C × A → B) such that for

any other pair (C′, f : C′ × A → B) there exists a unique arrow

g : C′ → C such that ev ◦ 〈g ◦ π, π′〉 = f . We write C = BA and

g = Λ(f).

32

Categorical combinators (syntax and typing)

We have a syntax for objects:

A ::= 1 || A×A || A→ A

and for morphisms:

f ::= id || f ◦ f || 〈f, g〉 || π || π′ || Λ(f) || ev || !
Typing rules (we write A ` f : B for what we wrote as f : A→ B):

A ` id : A

A ` f : B B ` g : C

A ` g ◦ f : C A `! : 1

A ` f : B A ` g : C

A ` 〈f, g〉 : B × C A×B ` π : A A×B ` π′ : B

A×B ` f : C

A ` Λ(f) : B → C (A→ B)×A ` ev : B
33

Categorical combinators (equations)

(f ◦ g) ◦ h = f ◦ (g ◦ h)
f ◦ id = f
id ◦ f = f

π ◦ 〈f, g〉 = f
π′ ◦ 〈f, g〉 = g
〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉
〈π, π′〉 = id

ev ◦ 〈Λ(f), g〉 = f ◦ 〈id , g〉
Λ(f) ◦ g = Λ(f ◦ 〈g ◦ π, π′〉)
Λ(ev) = id

f =!

34

CCC’s as models of λ-calculus

Our goal is now to interpret / compile (simply-typed) λ-calculus

in CCC’s / categorical combinators.

Actually, we shall:

• first compile λ-calculus into variable-free notation (De Bruijn)

• and then compile this algebraic syntax into categorical combi-

nators.

35

De Bruijn notation

Syntax of terms:

M ::= n |MM | λ.M

Compiling λ-calculus: The translation is indexed by a list of

variables (we write |~x| for the length of ~x)

DB ~x1,x, ~x2
(x) = | ~x2| (x 6∈ ~x2)

DB~x(M1M2) = DB~x(M1)DB~x(M2)
DB~x(λy.M) = λ.DB~x,y(M)

β-reduction is then trickier than in the λ-calculus (if one thinks

that avoiding capture of variables is not tricky)

36

β-reduction in De Bruijn notation

(λ.M)N = M [0← N]

where substitution is defined by

m[n← N] =


m if m < n
τn0 (N) if m = n
m− 1 if m > n

(M1M2)[n← N] = (M1[n← N])(M2[n← N])
(λ.M)[n← N] = λ.(M [n+ 1← N])

τni (j) =

{
j if j < i
j + n if j ≥ i

τni (N1N2) = (τni (N1))(τni (N2))
τni (λ.N) = λ.(τni+1(N))

37

From De Bruijn to categorical combinators

[[An, . . . , A0 ` i : Ai]] = (. . . (1×An)× . . .)×A`π′ ◦ πi : Ai
[[Γ `MN : B]] = ev◦ < [[Γ `M : A→ B]], [[Γ ` N : A]] >
[[Γ ` λ.M : A→ B]] = Λ([[Γ, A `M : B]])

[[M [n← N]]] = [[M]] ◦ Pn(〈id , [[N]]〉)
[[τni (N)]] = [[N]] ◦ P i(πn)

where P (f) = 〈f ◦ π, π′〉

The translation preserves the equations of De Bruijn’s presenta-

tion and turns an infinite syntax (varying n) into a finite one.

38

A big step operational semantics

The idea is to formalise the set-theoretical functions underlying
the combinators:

〈id |s〉 = s

〈f |s〉 = s1 〈g|s1〉 = s2

〈g ◦ f |s〉 = s2

〈f |s〉 = s1 〈g|s〉 = s2

〈〈f, g〉|s〉 = (s1, s2) 〈π|(s1, s2)〉 = s1 〈π′|(s1, s2)〉 = s2

〈Λ(f)|s〉 = Λ(f)s

〈f |(s, t)〉 = s1

〈ev |(Λ(f)s, t)〉 = s1

On the way, we have defined a syntax for new syntactical objects
s, that we call values:

s ::= () || n || (s, s) || Λ(f)s

39

Compiling categorical combinators into machine code

Idea: implementing tail recursion with a stack.

We now view a term as a piece of code: composition becomes

code concatenation, and the symbols of the pairing combinator

become instructions PUSH, SWAP and CONS, respectively.

code(id) = SKIP code(π) = CAR code(π′) = CDR code(ev) = ev
code(g ◦ f) = code(f); code(g) code(Λ(f)) = Λ(code(f))
code(〈f, g〉) = PUSH; code(f); SWAP; code(g); CONS

40

The Categorical Abstract Machine

〈SKIP;C | s | S〉 → 〈C | s | S〉
〈CAR;C | (s1, s2 | S〉 → 〈C | s1 | S〉
〈CDR;C | (s1, s2 | S〉 → 〈C | s2 | S〉
〈PUSH;C | s | S〉 → 〈C | s | s · S〉
〈SWAP;C | s1 | s2 · S〉 → 〈C | s2 | s1 · S〉
〈CONS;C | s2 | s1 · S〉 → 〈C | (s1, s2) | S〉
〈Λ(C);C′ | s | S〉 → 〈C′ | Λ(C)s | S〉
〈ev ;C′ | (Λ(C)s, t) | S〉 → 〈C;C′ | (s, t) | S〉

41

Normalisation by evaluation

On the board!

But you can access unfinished notes here:

www.pps.univ-paris-diderot.fr/~curien/NBE.pdf

There is also a hidden pointer to the book

Domains and Lambda-calculi (Amadio and Curien 1998). Ask

me...

42

Monoidal categories

A monoidal category is a category C equipped with a functor

⊗ : C×C→ C, called the tensor product, a distinguished object

1, called the tensor unit, and natural isomorphisms, also called

the canonical isomorphisms:

α : A⊗ (B ⊗ C)→ (A⊗B)⊗ C ιl : 1⊗A→ A ιr : A⊗ 1→ A

satisfying the following two so-called coherence equations:

(α− α) α ◦ α = (α⊗ id) ◦ α ◦ (id ⊗ α)
(α− ι) (ιr ⊗ id) ◦ α = id ⊗ ιl .

43

Free monoidal categories (the syntax)

Consider a set X. We build a monoidal category Free(X) as

follows. We have a syntax for objects and terms:

T ::= x (where x ∈ X) || I || T ⊗ T
M ::= α || λ || ρ || α−1 || λ−1 || ρ−1 ||M ◦M || id ||M ⊗M

with typing rules:

α : (T1 ⊗ T2)⊗ T3 → T1 ⊗ (T2 ⊗ T3) λ : I ⊗ T → T ρ : T ⊗ I → T

α−1 : T1 ⊗ (T2 ⊗ T3)→ (T1 ⊗ T2)⊗ T3 λ−1 : T → I ⊗ T ρ−1 : T → T ⊗ I

id : T → T

M1 : T1 → T2 M2 : T2 → T3

M2 ◦M1 : T1 → T3

M1 : T1 → T ′1 M2 : T2 → T ′2

M1 ⊗M2 : T1 ⊗ T2 → T ′1 ⊗ T ′2

quotiented by the laws of categories, bifunctors, naturality +

coherence equations

44

The coherence theorem

Free(X) is indeed free: for every function ρ : X → C (mapping
each x to an object of a monoidal category C) there exists a
unique strict monoidal functor [[]]ρC : Free(X) → C that extends
it.

Coherence theorem: for any two terms M,M ′ : T → T ′ of the
same type, we have

[[M]]ρC = [[M ′]]ρC
(for any monoidal category, and any valuation).

Proof: By confluence and strong normalisation! (remark of
Huet)

Other proof: by a 2-categorical version of the Yoneda embedding
(Yoneda strictifies, see e.g. Leinster’s book on higher operads).

45

Sequent calculus

Sequents are formal objects of the form A1, . . . , Am ` B1, . . . , Bn,
with the understanding that the conjunction of the A’s implies
the disjunction of the B’s.

In presence of an involutive negation ((A⊥)⊥ = A), we can put
all formulas on the right.

In sequent calculus, one has only introduction rules (no elimina-
tion rules like in natural deduction) for the connectives + the
other rules (next slide)

Natural deduction corresponds closely to λ-calculus (Curry-Howard)

There exists also a syntax corresponding to sequent calculus
(Curien-Herbelin)

46

The non-logical rules

CONTRACTION WEAKENING

` Γ, A,A

` Γ, A
` Γ
` Γ, A

AXIOM CUT

` A,A⊥
` Γ, A `∆, A⊥

` Γ,∆

47

Linear logic (Girard)

The contraction rule in logic is responsible for the combinatorial

explosion of cut-elimination / normalisation.

In contrast, linear λ-terms normalize in linear time.

The idea is to

1) remove contraction and weakening: then there are two dis-

junctions and two conjunctions

2) reintroduce contraction and weakening in a controlled way,

through a modality

48

Multiplicatives and additives

MULTIPLICATIVES
` A,B,Γ
` AOB,Γ

` A,Γ1 ` B,Γ2

` A⊗B,Γ1,Γ2

ADDITIVES
` A,Γ

` A⊕B,Γ
` B,Γ
` A⊕B,Γ

` A,Γ ` B,Γ
` ANB,Γ

In the absence of contraction and weakening, the rules for the

two disjunctions (O,⊕) are not interderivable (same for the con-

junctions N,⊗).

The units are the 0-ary cases of these 4 connectives (omitted).

49

Positive and negative connectives

Besides the dichotomy of additives versus multiplicatives (the

terminology comes from the coherence space semantics), there

is also another dichotomy:

POSITIVE NEGATIVE

⊗ ⊕ O N

Irreversible Reversible
Eager Lazy

Call-by-value Call-by-name
Active Passive
Player Opponent

50

Formulas as resources

The following is known as Lafont’s menu:

Menu (price 17 Euros)

Quiche or Salad
Chicken or Fish

Banana or “Surprise du Chef∗”

(*) either “Profiteroles” or “Tarte Tatin”

17E `



(QNS)
⊗

(CNF)
⊗

(BN(P ⊕ T))

51

The game semantical reading of proofs

The player is the cook and plays a rule, the opponent is the

client and challenges the player by picking one antecedent in the

rule.

5E ` QNS 8E ` CNF
4E ` B

4E ` T
4E ` P ⊕ T

4E ` BN(P ⊕ T)

17E ` (QNS)⊗ (CNF)⊗ (BN(P ⊕ T))

52

The exponentials

We add two more connectives: ! and its dual ?

CONTRACTION WEAKENING

`?A, ?A,Γ

`?A,Γ
` Γ
`?A,Γ

DERELICTION PROMOTION

` Γ, A

` Γ, ?A

`?Γ, A

`?Γ, !A

53

The full syntax of formulas

A ::= X || X⊥ || A⊗A || 1 || A⊕B || 0 || ANB || > || AOB || ⊥ || !A || ?A

Negation defined by De Morgan’s laws:

X⊥⊥ = X (!A)⊥ =?(A⊥)
(A⊗B)⊥ = A⊥OB⊥ 1⊥ = ⊥
(A⊕B)⊥ = A⊥NB⊥ 0⊥ = >

Two important provable isomorphisms:

A⊗ (B ⊕ C) ≡ (A⊗B)⊕ (A⊗ C)

(!A)⊗ (!B) ≡ !(ANB)

Two important derived connectives:

A(B = A⊥OB A⇒ B = (!A) (B

from where linear logic started.

54

Cut elimination

Π1
...

` A⊥, B⊥,Γ1

` A⊥OB⊥,Γ1

Π2
...

` A,Γ2

Π3
...

` B,Γ3

` A⊗B,Γ2,Γ3

` Γ1,Γ2,Γ3 −→

Π1
...

` A⊥, B⊥,Γ1

Π2
...

` A,Γ2

` B⊥,Γ1,Γ2

Π3
...

` B,Γ3

` Γ1,Γ2,Γ3

Π
...

` Γ1, ?B⊥, ?B⊥

` Γ1, ?B⊥

Π′
...

`?Γ2, B

`?Γ2, !B

` Γ1, ?Γ2 −→

Π
...

` Γ1, ?B⊥, ?B⊥

Π′
...

`?Γ2, B

`?Γ2, !B

` Γ1, ?Γ2, ?B⊥

Π′
...

`?Γ2, B

`?Γ2, !B

` Γ1, ?Γ2, ?Γ2

` Γ1, ?Γ2

55

Categorical semantics of linear logic

We limit ourselves to the connectives ⊗, (, !, and N.

We need (simplified):

• a monoidal closed category C (i.e. all ⊗A have right adjoints)

to interpret ⊗ and (

• a comonad on C to interpret !.

• C must also have finite products to interpret N, and the fol-

lowing compatibilty must hold:

(!A)⊗ (!B) ∼= !(ANB) 1 ∼=!> .

The key fact connecting intuitionnistic logic and linear logic lies

in the following: from these assumptions, it follows that the

co-Kleisli category C! is cartesian closed.

56

More on linear logic

• Girard also introduced proof nets, a beautiful presentation

of proofs as graphs (quotienting irrelevant details of sequent

calculus proofs) for the multiplicative-exponential fragment. The

case of units and additives is much trickier.

• restrictions of the capabilities of the exponentials to charac-

terise time and space complexity classes (started by Girard under

the name of light linear logics)

• differential linear logic (Ehrhard-Regnier)

• ludics (Girard)

57

A short journey in domain theory

All started with the solution of the equation D ∼= (D → D).

For this, to avoid the cardinality problem, Scott proposed com-
plete partial orders (cpo’s) and continuous functions between
them.

But then who can do more can do less: the same framework al-
lowed to give meaning to functional programs involving recursive
and possibly non-terminating computations.

In order to understand the relations between syntax and seman-
tics, a small toy language called PCF was introduced (still by
Scott) and two seminal papers by Milner and Plotkin investi-
gated the relation between this syntax and its domain-theoretic
interpretation.

58

Complete partial orders

Given a partial order (D,≤), a non-empty subset ∆ ⊆ D is called

directed if

∀x, y ∈∆ ∃ z ∈∆ x ≤ z and y ≤ z .

A partial order (D,≤) is called a directed complete partial order

(dcpo) if every directed subset has a least upper bound (lub)),

denoted
∨

∆. If moreover (D,≤) has a least element (written

⊥), then it is called a complete partial order (cpo).

59

The CCC of cpo’s and continuous functions

Let (D,≤) and (D′,≤) be partial orders. A function f : D → D′

is called monotonic if

∀x, y ∈ D x ≤ y ⇒ f(x) ≤ f(y) .

If D and D′ are dcpo’s, a function f : D → D′ is called continuous
if it is monotonic and preserves directed lub’s: f(

∨
∆) =

∨
f(∆)

• Cpo’s and continuous functions form a cartesian closed cate-
gory Cpo.
• The partial order on D → E is the pointwise ordering:

f ≤ g iff ∀x f(x) ≤ g(x)

• Moreover, every continuous function f : D → D has a (least)
fixpoint (

∨
fn(⊥))

60

The language PCF

It is simply typed λ-calculus with types

σ ::= ι || o || σ → σ

to which one adds the following constants:

n : ι (n ∈ ω)
tt ,ff : o
succ, pred : ι → ι
zero? : ι → o
if then else : o → ι → ι → ι
if then else : o → o → o → o
Y : (σ → σ) → σ for all σ

61

Small-step operational semantics for PCF

(λx.M)N →op M [N/x] YM →op M(YM)
zero?(0)→op tt zero?(n+ 1)→op ff
succ(n)→op n+ 1 pred(n+ 1)→op n
if tt then N else P →op N if ff then N else P →op P

M →op M ′

MN →op M ′N
M →op M ′

if M then N else P →op if M ′ then N else P

M →op M ′

f(M)→op f(M ′)
(for f ∈ {succ, pred , zero?})

62

The continuous model of PCF

To interpret PCF in Cpo we just need to interpret

• the base types:

[[o]] = {⊥, tt ,ff }

with ⊥ ≤ tt and ⊥ ≤ ff (and the same for ι)

• and the constants: Y as the least fixed point operator, and the

other constants in the obvious way.

These properties make sense in every cpo-enriched category, re-

formulating the condition on Y as

[[Y]] =
∨

[[x : σ, f : σ → σ ` fn(x)]] ◦ 〈id ,⊥◦ !〉

When they are satisfied, the model is called standard.

63

Algebraic cpo’s

The cpo’s interpreting PCF types in the continuous model have

the further proprety of being algebraic. This means that each

element x is the directed least upper bound of its compact ap-

proximants d ≤ x (d is called compact if whenever d ≤
∨

∆ then

d ≤ x for some x ∈∆).

Algebraicity gives us a logical reading of domain theory:

• d ≤ x as a predicate

• x itself as a set of predicates that hold for x

64

A turbo introduction to enriched categories

Let V be a monoidal category (where composition is denoted

with ·, and identies with 1). A V-enriched category C is a

structure consisting of

• a collection of objects A : C

• a family of objects Hom[A,B] of V (for each pair of objects),

together with

• families of morphisms

id : I → Hom[A,A] and ◦ : Hom[B,C]⊗Hom[B,C]→ Hom[A,C]

such that

◦ · (id ⊗ ◦) = ◦ · (◦ ⊗ id) · α (pentagon strikes again!)
◦ · (id ⊗ 1) = λ
◦ · (1⊗ id) = ρ

65

Adequacy

The following property holds in the continuous model (and in fact
in any standard model of PCF) (computational adequacy):

M →∗ v if and only if [[M]] = v

for every closed term of base type. The proof uses realisability.
• We next define operational equivalence:

M =op N ⇔ (∀C C[M]→∗ v ⇔ C[N]→∗ v) ,

where C ranges over contexts (terms with a hole) of base type.
• Computational adequacy easily implies the following property,
called adequacy:

[[M]] = [[N]] ⇒ M =op N .

If the converse also holds, then we say that the model is fully
abstract.

66

Extensional models of PCF

• A category C with terminal object 1 is said to have enough

points if (for any A,B and any f, g ∈ C[A,B]):

∀h : 1 → a (f ◦ h = g ◦ h) ⇒ f = g .

A model of PCF that has enough points is called extensional

• A standard model of PCF is called order-extensional if the

order between the morphisms is the pointwise ordering.

67

The full abstraction problem for PCF

Milner has shown the following results:

• In an extensional standard fully abstract model of PCF, the

interpretations of all types are algebraic, and their compact ele-

ments must be definable, i.e., the meaning of some closed term

• Easy consequence: all extensional standard fully abstract mod-

els of PCF are isomorphic

• There exists an order-extensional standard fully abstract model

of PCF, built (roughly) by quotienting the syntax by the obser-

vational equivalence.

So what was the open problem? To find another description of

this unique fully abstrat model (it was a vaguely stated problem,

but triggered lots of works!)

68

First candidate: the continuous model

It is not fully abstract, because por is not definable, where por :

[[o]]× [[o]]→ [[o]] is a function such that

por(tt ,⊥) = tt por(⊥, tt) = tt

This is because the meaning of all closed terms of type o×o→ o

are stable (next slide), while por is not.

But Plotkin showed that the continuous model is fully abstract

for PCF extended with a constant por with this behaviour.

69

Second candidate: the stable model (Berry)

A continuous function f between two cpo’s is called stable if
whenever x and y are upward compatible (i.e. ∃ z x ≤ z, y ≤ z)
we have

f(x ∧ y) = f(x) ∧ f(y)

(one requires our cpo’s to have all such greatest lower bounds)

Berry has constructed cartesian closed categories having as ob-
jects a certain class of cpo’s and as morphisms the stable func-
tions between them.

This model is not fully abstract because (omitted):
• there are stable functions that are not sequential
• meaning of all closed terms of type κ1 → . . . → κn → κ (κ, κi
base types) are sequential

70

What next will fail?

Let’s go back to Assia’s lectures last week. She showed us

that the two programs for computing addition behaved quite

differently:

addl(0, y) = y addr(x,0) = x
addl(Sx, y) = S(addl(x, y)) addr(x, Sy) = S(addr(x, y))

PhD subject proposed by Berry back in 1977:

find a (non-extensional) model of PCF where [[addl]] 6= [[addr]]

71

Sequential algorithms

Some student gladly worked on the subject... This gave rise to
the model of sequential algorithms (1978). It is a funny model
in which not only the left addition and the right addition are
different, but there is an element in the model that separates
them:

add taster([[addl]]) = tt add taster([[addr]]) = ff

One cannot implement this in PCF. We need some effects (to be
able to observe the order of execution and to raise exceptions)

Therefore (the extensional collapse of) the model of sequential
algorithms is not fully abstract

But it is fully abstract for a certain extension of PCF with control
(1992, Cartwright-Curien-Felleisen)

72

Has the full abstraction problem for PCF been solved?

• In 1994, two groups of researchers (Abramsky-Jagadeesan-
Malacaria, and Hyland-Ong + Nickau) announced their “so-
lution”. They built game models (similar in spirit to our 1978
model) that matched the syntax of PCF so closely that not
only all elements are definable, but definable by a unique term
in (possibly infinite) normal form. The model itself is not fully
abstract, but its quotient by the observational order is. But that
is (essentially) what Milner had done...
• A bit later, (Loader, published in 2001) proved the undecid-
ability of the observational equivalence for finitary PCF.
• My conclusion has been and remains that in a sense the full
abstraction problem has been solved, by the negative: a deno-
tational model should be there to help us decide!
• But game semantics is great! It was just the advertising that
was a bit... flashy. These things happen!

73

In the meantime...

In 1983 Girard reinvinted stability in his paper “System F, fifteen

years later”, in a very nice setting.

His cpo’s are of the form D(E) where E is a set of tokens,

or of elementary data pieces, that you can assemble if they are

coherent. The category of coherence spaces and stable functions

has

• as objects pairs (E,_^) where E is a set and _
^ is a reflexive

relation (a graph!)

• as morphisms from (E,_^) to (E′,_^
′) the stable functions from

D(E) to D(E′)
where D(E) is the set ol cliques x of E (e1, e2 ∈ x⇒ e1 _^ e2).

74

And this gave birth to...

The function space (E′,_^
′)(E,coh) has as tokens pairs

(x, e′)

where x is a finite clique of (E,_^) and e′ is a token of (E′,_^
′).

This led Girard to define
• !(E,_^) as the coherence space whose tokens are the finite
cliques of E and where x _^ y holds iff x ∪ y is a clique.
• (E,_^) ((E′,_^

′) as a coherence space whose tokens are pairs

(e, e′)

where e is a token of (E,_^) and e′ is a token of (E′,_^
′).

A new logic was born!

75

Successful stories...

It turned out that the decomposition ED = (!D) (E works in
all models considered so far in the slides, and also to the next
ones to come in the slides.

Girard considered also a variant of !(E,_^) where the tokens are
not finite cliques, but finite multisets of tokens whose underlying
set is a clique. Note that this set of tokens is no longer finite
when E is finite!

These two variants of ! are known as the set and the multiset
variant.

Sequential algorithms and Hyland-Ong games essentially differ
by their ! which is “set” in the first case, and “multiset” in the
second case.

76

Other successful stories...

Game semantics in the Hyland-Ong style have been very suc-

cessful for classifying programming features by properties of the

morphisms, also called strategies, of various categories of games.

As far as full abstraction is concerned, Hyland and Ong style

has led to a nice fully-abstract model of ALGOL (say, PCF with

references).

77

