
Information and Computation 255 (2017) 1–26
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Synchronization of Bernoulli sequences on shared letters

Samy Abbes 1

Bâtiment Sophie Germain, 8 place Aurélie Nemours, 75013 Paris, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 September 2015
Received in revised form 14 November 2016
Available online 21 April 2017

The topic of this paper is the distributed and incremental generation of long executions
of concurrent systems, uniformly or more generally with weights associated to elementary
actions.
Synchronizing sequences of letters on alphabets sharing letters are known to produce a
trace in the concurrency theoretic sense, i.e., a labeled partially ordered set. We study the
probabilistic aspects by considering the synchronization of Bernoulli sequences of letters,
under the light of Bernoulli and uniform measures recently introduced for trace monoids.
We introduce two algorithms that produce random traces, using only local random prim-
itives. We thoroughly study some specific examples, the path model and the ring model,
both of arbitrary size. For these models, we show how to generate any Bernoulli distributed
random traces, which includes the case of uniform generation.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The developments of concurrency theory and of model checking theory have urged the development of a theory of
probabilistic concurrent systems. A central issue is the problem of the uniform generation of long executions of concurrent
systems. Executions of a concurrent system can be represented as partial orders of events. Each partial order has several
sequentializations, the combinatorics of which is nontrivial. Therefore, the uniform generation of executions of a concurrent
system is much different from the uniform generation of their sequentializations. The later can be done using uniform
generation techniques for runs of transition systems, at the expense of an increasing amount of complexity due to the
combinatorics of sequentializations [18,9,20]. Yet, it still misses the overall goal of uniform generation among executions of
the system, since it focuses on their sequentializations.

We consider the framework of trace monoids [10], also called monoids with partial commutations [6]. Trace monoids have
been studied as basic models of concurrent systems since several decades [17,11]. One uses the algebraic commutation
of generators of the monoid to render the concurrency of elementary actions. The elements of the trace monoid, called
traces, represent the finite executions of the concurrent system [10]. More sophisticated concurrency models build on trace
monoids, for instance executions of 1-safe Petri nets correspond to regular languages of trace monoids [19].

The topic of this paper is the effective uniform generation of large traces, i.e., large elements in a trace monoid. It has
several potential applications in the model checking and in the simulation of concurrent systems.

In a recent work co-authored with J. Mairesse [2], we have shown that the notion of Bernoulli measure for trace monoids
provides an analogue, in a framework with concurrency, of classical Bernoulli sequences—i.e., the mathematical model of
memoryless coin tossing. In particular, Bernoulli measures encompass the uniform measure, an analogue for trace monoids

E-mail address: samy.abbes@univ-paris-diderot.fr.
1 Université Paris Diderot/IRIF CNRS UMR 8243.
http://dx.doi.org/10.1016/j.ic.2017.04.002
0890-5401/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2017.04.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:samy.abbes@univ-paris-diderot.fr
http://dx.doi.org/10.1016/j.ic.2017.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2017.04.002&domain=pdf

2 S. Abbes / Information and Computation 255 (2017) 1–26
of the maximal entropy measure. Therefore Bernoulli measures are an adequate theoretical ground to work with for the
random generation of traces, in particular for the uniform generation.

Bernoulli sequences are highly efficiently approximated by random generators. An obvious, but nevertheless crucial fea-
ture of their generation is that it is incremental. For the random generation of large traces, we shall also insist that the
generation procedure is incremental. Furthermore, another desirable feature is that it is distributed, in a sense that we
explain now.

We consider trace monoids attached to networks of alphabets sharing common letters. The synchronization of several
sequences of letters on different local alphabets sharing common letters is known to be entirely encoded by a unique
element of a trace monoid. If � denotes the union of all local alphabets, then the synchronization trace monoid is the monoid
with the presentation by generators and relations M = 〈� | ab = ba〉, where (a, b) ranges over pairs of letters that do not
occur in any common local alphabet. Hence, seeing local alphabets as “resources”, two distinct letters a and b commute in
M if and only if they do not share any common resource—a standard paradigm in concurrency theory.

In this framework, our problem rephrases as follows: given a synchronization trace monoid, design a probabilistic proto-
col to reconstruct a global random trace, uniformly among traces, and in a distributed and incremental way. By “distributed”,
we mean that the random primitives should only deal with the local alphabets. The expression “uniformly among traces”
deserves also an explanation, since the set of traces of a trace monoid is countable. One interpretation is to fix a size k for
target traces, and to retrieve a trace uniformly distributed among those of size k. Another interpretation is to consider infi-
nite traces, i.e., endless executions of the concurrent system. It amounts in an idealization of the case with large size traces.
We then rely on the notion of uniform measure for infinite traces, which happens to have nicer properties than the uniform
distribution on traces of fixed size. As explained above, the uniform measure belongs to the largest class of Bernoulli mea-
sures for trace monoids. Hence, a slightly more general problem is the distributed and incremental reconstruction of any
Bernoulli measure attached to a synchronization trace monoid.

We introduce two algorithms that partly solve this problem, the Probabilistic Synchronization Algorithm (PSA) and
the Probabilistic Full Synchronization Algorithm (PFSA), the later building on the former. According to the topology of
the network, one algorithm or the other shall be applied. We show that the problem of generating traces according to
a Bernoulli measure is entirely solved for some specific topologies of the network, namely for the path topology and for
the ring topology—it could also be applied successfully to a tree topology. It is only partly solved for a general topology.
Yet, even in the case of a general topology, our procedure outputs large random traces according to a Bernoulli scheme,
although it is unclear how to tune the probabilistic parameters in order to obtain uniformity. Furthermore, the amount of
time needed to obtain a trace of size k is linear with k in average.

Several works analyzing the exchange of information in concurrent systems restrict their studies to tree topologies, see
for instance [13], and little has been said on the probabilistic aspects. In particular, designing an incremental and distributed
procedure to uniformly randomize a system with a ring topology has been an unsolved problem in the literature so far.

How does our method compare with standard generation methods based on tools from Analytic Combinatorics, such as
Boltzmann samplers techniques? There exists a normal form for traces, the so-called Cartier–Foata normal form, from which
one derives a bijection between traces of a given trace monoid and words of a regular language. This seems to draw a direct
connection with Boltzmann sampling of words from regular languages ([12, p. 590], [4]). This approach however suffers from
some drawbacks. First, the rejection mechanism which is at the very heart of the Boltzmann sampling approach prevents
the construction to be incremental, as we seek. This could be avoided by considering instead the generation of a special
Markov chain, namely the Markov chain arising from the elements of the normal form associated to the uniform measure
on infinite traces, as investigated partly in [3]. But this leads to a second problem: the randomness now concentrates on the
set of cliques of the trace monoid, a set whose size grows exponentially fast with the number of generators of the monoid
in general. It henceforth misses the point of being a distributed generation.

Outline. Section 2 illustrates the two algorithms, the PSA and the PFSA, for generating random traces from a network
of alphabets. The algorithms will be fully analyzed in forthcoming sections. Sections 3 and 4 are two preliminary sections,
gathering material on the combinatorics of trace monoids for the first one, and material on Bernoulli measures for trace
monoids for the second one. The non-random algorithms for the synchronization of sequences, possibly infinite, that we
present in Section 3 seem to be new, although the fundamental ideas on which they rest are not new. A new result on the
theory of Möbius valuations is given at the end of Section 4.

Our main contributions are organized in Sections 5 and 6. Section 5 is devoted to the Probabilistic Synchronization
Algorithm (PSA). The analysis of the algorithm itself is quite simple and short, whereas the significant contributions are in
the examples. In particular, for the case of the path model, the PSA is shown to work the best one could expect.

Section 6 is devoted to the description and to the analysis of the Probabilistic Full Synchronization Algorithm (PFSA),
both from the probabilistic point of view and from the complexity point of view. Examples are examined; the ring model of
arbitrary size is precisely studied, and we obtain the satisfying result of simulating any Bernoulli scheme on infinite traces
by means of the PFSA.

Finally, Section 7 discusses some additional complexity issues and suggests perspectives.

S. Abbes / Information and Computation 255 (2017) 1–26 3
Fig. 1. Heap of pieces corresponding to the vector Y .

Fig. 2. Synchronization graph of the path model with five generators.

2. Illustrating the PSA and PFSA algorithms

In this section, we illustrate our two generation algorithms on small examples, as well as the tuning of their probabilistic
parameters, at an informal and descriptive level.

2.1. Illustrating the Probabilistic Synchronization Algorithm (1)

Let a0, a1, a2, a3, a4 be five distinct symbols, and consider the four alphabets:

�1 = {a0,a1}, �2 = {a1,a2}, �3 = {a2,a3}, �4 = {a3,a4}.
To each alphabet �i is attached a device able to produce a random sequence Yi = (Yi,1, Yi,2, . . .) of letters Yi, j ∈ �i .

The random letters are independent and identically distributed, according to a distribution pi = (
pi(ai−1) pi(ai)

)
to be

determined later, but with positive coefficients. Furthermore, we assume that the devices themselves are probabilistically
independent with respect to each other. For instance, the beginnings of the four sequences might be:

Y1 = (a1a0a0a1a0 . . .) Y2 = (a1a2a2a2a2 . . .)

Y3 = (a2a2a3a3a2 . . .) Y4 = (a4a3a3a3a4 . . .)

Then we stack these four sequences in a unique vector Y with four coordinates, and we join the matching letters from
one coordinate to its neighbor coordinates, in their order of appearance. The border elements a0 and a4 do not match with
any other element; some elements are not yet matched (for example, the second occurrence of a1 in Y1), and we do not
picture them. This yields:

Y =

⎛
⎜⎜⎜⎝

a1 a0 a0 . . .

a1 a2 a2 a2 . . .

a2 a2 a3 a3 a2 . . .

a4 a3 a3 . . .

⎞
⎟⎟⎟⎠

Finally, we identify each matching pair with a single piece, labeled with the matching letter and we impose a rotation of
the whole picture by a quarter turn counterclockwise. We obtain the heap of pieces depicted in Fig. 1. It is apparent on this
picture that pieces ai and ai+1 share a sort of common resource. Therefore we depict the topology of the system resulting
from the synchronization of the network of alphabets (�1, �2, �3, �4) in Fig. 2, by drawing an undirected graph with pieces
as vertices, and an edge between two pieces whenever they share a common resource, or equivalently, whenever they both
appear in the same alphabet.

For each device, attached to the alphabet �i , the PSA algorithm does the following: 1) Generate its own local random
sequence; 2) Communicate with the neighbors in order to tag the matching of each of the occurring letters.

Since the coefficients pi(ai−1) and pi(ai) are positive, each coordinate Yi has infinitely many occurrences of both letters
ai−1 and ai . Furthermore, each occurrence of a letter a j with j �= 0, 4 will eventually match a corresponding occurrence in
a neighbor coordinate. Therefore the random heap that we obtain, say ξ , is infinite if the algorithm keeps running forever.
The PSA produces incremental finite approximations of ξ . The probabilistic analysis of the PSA consists in determining the
probability distribution of the theoretical infinite random heap ξ that the PSA would produce if it was to run indefinitely.

In order to characterize the probability distribution of ξ , we shall denote by ↑ x, for each finite possible heap x, the
probabilistic event that ξ starts with x. This means that the finite heap x can be seen at the bottom of ξ . Equivalently:
ξ ∈↑ x if, after waiting long enough, the finite heap x can be seen at the bottom of the current heap produced by the PSA.

We aim at evaluating the probability P(↑ x) for every finite heap x. For this, consider an arbitrary possible sequential-
ization of x, seen as a successive piling of different occurrences of the elementary pieces, which we write symbolically as
x = x1 · . . . · xk with x j ∈ {a0, a1, a2, a3, a4}. Then P(↑ x) is obtained as the following product:

4 S. Abbes / Information and Computation 255 (2017) 1–26
Fig. 3. Synchronization graph of the ring model with four generators.

P(↑ x) = tx1 · . . . · txk ,

where the coefficient tx j corresponds to the probability of having the letter x j appearing either on its single coordinate if
x j = a0 or x j = a4, or on both coordinates to which it belongs otherwise. Hence:

ta0 = p1(a0) ta1 = p1(a1) · p2(a1) ta2 = p2(a2) · p3(a2)

ta3 = p3(a3) · p4(a3) ta4 = p4(a4).

For instance, if the local probabilities pi were uniform, pi = (
1/2 1/2

)
, we would have:

ta0 = 1

2
ta1 = 1

4
ta2 = 1

4
ta3 = 1

4
ta4 = 1

2
.

This choice, which may seem natural at first, would actually produce a random heap with a bias, namely it would favor
the appearance of pieces a0 and a4. Since ta0 = 1/2 and ta1 = 1/4 in this case, it would produce on average twice more
occurrences of a0 than occurrences of a1.

However, for uniform generation purposes, it is desirable to obtain all coefficients tai equal. Can we tune the initial
probability distributions pi in order to achieve this result? Introduce the Möbius polynomial μ(z) = 1 − 5z + 6z2 − z3, and
consider its root of smallest modulus, namely q0 ≈ 0.308. It turns out that the only way to have all coefficients tai equal
is to make them precisely equal to q0. In turn, this imposes conditions on the local probability distributions p1, p2, p3, p4
with only one solution, yielding for this example:

p1(a0) = q0 ≈ 0.308 ·+·=1 p1(a1) = 1 − q0 ≈ 0.692

p2(a1) = q0
1−q0

≈ 0.445 ·+·=1

·×·=q0

p2(a2) = 1−2q0
1−q0

≈ 0.555

p3(a2) = 1−2q0
1−q0

≈ 0.555 ·+·=1

·×·=q0

p3(a3) = q0
1−q0

≈ 0.445

p4(a3) = 1 − q0 ≈ 0.692 ·+·=1

·×·=q0

p4(a4) = q0 ≈ 0.308

This array of positive numbers has the sought property that the product of any two numbers along the depicted diagonals
equals q0, and the sum of every line equals 1; and q0 is the only real allowing this property for an array of this size. Running
the PSA with these values for the local probability distributions produces a growing random heap which is uniform, in a
precise meaning that will be formalized later in the paper.

2.2. Illustrating the Probabilistic Synchronization Algorithm (2)

Consider the following network of alphabets with the four letters a0, a1, a2, a3:

�1 = {a0,a1}, �2 = {a1,a2}, �3 = {a2,a3}, �4 = {a3,a0}.
Analogously to the previous example, the synchronization graph for this network is depicted in Fig. 3. Let us try to apply

the same generation technique as in the previous example. For each alphabet �i , we consider a random sequence Yi of
letters of this alphabet. Given the symmetry of the network of alphabets, in order to obtain a uniform distribution we need
to consider this time uniform local distributions pi = (

1/2 1/2
)

for i = 1, 2, 3, 4. This yields for instance:

Y1 = a0a1a1a0 . . . Y2 = a1a2a2a1 . . . Y3 = a3a2a3a2 . . . Y4 = a0a3a0a3 . . .

The construction of the stacking vector Y with the matching of letters yields:

Y =

⎛
⎜⎜⎜⎜⎜⎝

a0 a1 . . .

a1 a2 . . .

a3 a2 . . .

a0 a3 . . .

⎞
⎟⎟⎟⎟⎟⎠ the two occurrences of a0 being connected.

S. Abbes / Information and Computation 255 (2017) 1–26 5
Fig. 4. Output heap resulting from an instance of the PSA for the ring model with four generators.

Fig. 5. First iteration of the PFSA. (i) The finite output ξ ′
1 of the PSA on three generators a0, a1, a2. (ii) Adding the piece a3 on top of ξ ′

1, the obtained heap
is not pyramidal since occurrences of a1 can be removed without moving a3. (iii) Another instance of the heap ξ ′

1 on three generators a0, a1, a2. (iv) This
time, the new heap ξ1 obtained by adding a3 on top of ξ ′

1 is pyramidal.

The corresponding heap is depicted in Fig. 4. It is then impossible to extend this heap while still respecting the sequences
Y1, Y2, Y3, Y4; not because some letter is waiting for its matching, but because the different letters already present are
blocking each other, creating a cycle that prevents to interpret the rest of the vector as an extension of the heap of Fig. 4.
Such a cycle will appear with probability 1 at some point. Henceforth the PSA only outputs finite heaps for this model.

2.3. Illustrating the Probabilistic Full Synchronization Algorithm

In the previous example, we have seen that the PSA outputs a finite heap with probability 1, whereas we would like to
obtain heaps arbitrary large. The Probabilistic Full Synchronization Algorithm (PFSA) is designed to solve this issue. We will
now describe how to tune it, for the ring model with four generators introduced above and illustrated in Fig. 3, in order to
produce infinite heaps uniformly distributed.

First, the theory of Bernoulli measures for trace monoids (see below in Section 4) tells us that each piece of the monoid
must be given the probabilistic weight q1, root of smallest modulus of the Möbius polynomial μ(z) = 1 − 4z + 2z2, hence
q1 = 1 − √

2/2.
Second, we arbitrarily choose a piece, say a3, to be removed. We are left with the following network of alphabets:

�′
1 = {a0, a1}, �′

2 = {a1, a2}, �′
3 = {a2}, �′

4 = {a0}. From the heaps point of view, this is equivalent to the network with
only two alphabets (�′

1, �
′
2), and sharing thus the only letter a1. We will now design a variant of the PSA algorithm, to be

applied to the network (�′
1, �

′
2), outputting finite heaps with probability 1, and attributing the probabilistic parameter q1

to each of the three pieces a0, a1, a2. This is possible by considering sub-probability distributions p′
1, p

′
2 associated to �′

1, �′
2

instead of probability distributions for the local generations. A possible choice, although not the unique one, is the following:

p′
1(a0) = q1 = 1 − √

2/2 ·+·=1 p′
1(a1) = 1 − q1 = √

2/2

p′
2(a1) = q1

1−q1
= √

2 − 1 ·+· <1

·×·=q1

p′
2(a2) = q1 = 1 − √

2/2

Note that the first line sums up to 1 whereas the second line sums up to less than 1, and this guaranties that the PSA
executed with these values will output a finite heap and stop with probability 1.

Let ξ ′
1 be the output of the PSA on (�′

1, �
′
2) with the above parameters. It is a finite heap built with occurrences of

a0, a1 and a2 only. Then, we add the piece a3 on top of ξ ′
1, and we check whether the obtained heap is pyramidal, which

means that no piece can be removed from it without moving the last piece a3 (see Fig. 5). If it is not pyramidal, we reject
it, and re-run the PSA, producing another instance of ξ ′

1, until ξ ′
1 · a3 is pyramidal. At the end of this process, we obtain a

pyramidal heap ξ1 = ξ ′
1 · a3 built with the four generators a0, a1, a2, a3, and a unique occurrence of a3.

The process of computing this heap ξ1 is the first loop of the PFSA. We initialize what will be the final output of the
algorithm by setting y1 = ξ1. We then reproduce the above random procedure, yielding a pyramidal heap ξ2 and then we
form the heap y2 = y1 ·ξ2, obtained by simply piling up ξ2 on top of y1. We iterate this procedure: outputting ξ3 pyramidal,
we put y3 = y2 · ξ3, and so on. Then the increasing heaps y1, y2, . . . approximate an infinite heap on the four generators
a0, a1, a2, a3 which we claim to be uniformly distributed.

6 S. Abbes / Information and Computation 255 (2017) 1–26
3. Preliminaries on trace monoids

An alphabet is a finite set, usually denoted by �, the elements of which are called letters. The free monoid generated by
� is denoted by �∗ .

3.1. Combinatorics of trace monoids

3.1.1. Definitions
An independence pair on the alphabet � is a binary, irreflexive and symmetric relation on �, denoted by I . The trace

monoid M = M(�, I) is the presented monoid M = 〈� | ab = ba for all (a, b) ∈ I〉. Hence, if R is the smallest congruence
on �∗ that contains all pairs (ab, ba) for (a, b) ranging over I , then M is the quotient monoid M = �∗/R . Elements of M
are called traces [10]. The unit element is denoted by e, and the concatenation in M is denoted by “·”.

The length |x| of a trace x ∈M is the length of any word in the equivalence class x. The left divisibility relation on M is
denoted by ≤, it is defined by x ≤ y ⇐⇒ ∃z ∈M y = x · z.

3.1.2. Cliques
A clique of M is any element x ∈ M of the form x = a1 · . . . ·an with ai ∈ � and such that (ai, a j) ∈ I for all i �= j. Cliques

thus defined are in bijection with the cliques, in the graph-theoretic sense, of the pair (�, I) seen as an undirected graph,
that is to say, with the set of complete sub-graphs of (�, I).

The set of cliques is denoted by C . The unit element is a clique, called the empty clique. The set of nonempty cliques is
denoted by C.

For instance, for M = 〈a0, a1, a2, a3, a4 | aia j = a jai for |i − j| > 1〉, we have C = {e, a0, a1, a2, a3, a4, a0a2, a0a3, a0a4,

a1a3, a1a4, a2a4, a0a2a4}. We call this trace monoid the path model with five generators, it corresponds to the example
introduced in Section 2.1. Note that the synchronization graph depicted in Fig. 2 is not (�, I) but its complement.

3.1.3. Growth series and Möbius polynomial
The growth series of M is the formal series

ZM(t) =
∑

x∈M
t|x| .

The Möbius polynomial [6] is the polynomial μM(t) defined by

μM(t) =
∑
c∈C

(−1)|c|t|c| .

For the path model with five generators introduced above, we have μM(t) = 1 − 5t + 6t2 − t3.
The Möbius polynomial is the formal inverse of the growth series [6,23]:

ZM(t) = 1/μM(t) .

The Möbius polynomial has a unique root of smallest modulus, say p0. This root is real and lies in (0, 1], and coincides
with the radius of convergence of the power series ZM(t) [16,14].

3.1.4. Multivariate Möbius polynomial
The Möbius polynomial has a multivariate version, μM(t1, . . . , tN) where t1, . . . , tN are formal variables associated with

the generators a1, . . . , aN of M. It is defined by:

μM(t1, . . . , tN) =
∑
c∈C

(−1)|c|t j1 · . . . · t jc ,

where the variables t j1 , . . . , t jc correspond to the letters such that c = a j1 · . . . · a jc .

3.1.5. Irreducibility
The dependence relation associated with M = M(�, I) is the binary, symmetric and reflexive relation D = (� × �) \ I .

The trace monoid M is irreducible if the pair (�, D) is connected as a nonoriented graph.
If M is irreducible, then the root p0 of M is simple [16].

3.2. The heap of pieces interpretation of traces

3.2.1. The picture
Viennot’s theory provides a visualization of traces as heaps of pieces [23]. Picture each trace as the piling of dominoes

labeled by the letters of the alphabet, and such that dominoes associated with two letters a and b fall to the ground
according to parallel lanes, and disjoint if and only if (a, b) ∈ I . See an illustration in Fig. 6, (i)–(iii), for M = 〈a, b, c, d | ac =
ca, ad = da, bd = db〉.

S. Abbes / Information and Computation 255 (2017) 1–26 7
Fig. 6. (i)–(ii): representation of the two congruent words acbdc and cadbc in 〈a, b, c, d | ac = ca, ad = da, bd = db〉. (iii): the resulting trace a · c · b · d · c,
represented as a heap of pieces. (iv): the associated labeled ordered poset. For instance a < d does not hold since acbdc → cabdc → cadbc → cdabc.

3.2.2. Traces as labeled ordered sets
The formalization of this picture is done by interpreting each trace x of a trace monoid as an equivalence class, up to

isomorphism, of a �-labeled partial order, which we describe now.
Let x be a trace, written as a product of letters x = a1 · . . . · an . Let x = {1, . . . , n}, and define a labeling φ : x → � by

φ(i) = ai . Equip x with the natural ordering on integers ≤. Then remove the pair (i, j) from the strict ordering relation <
on x whenever, by a finite number of adjacent commutations of distinct letters, the sequence (a1, . . . , an) can be transformed
into a sequence (aσ(1), . . . , aσ(n)) such that σ(i) > σ(j).

The set of remaining ordered pairs (i, j) is a partial ordering on x, which only depends on x, and which defines the heap
associated with x. See Fig. 6, (iv).

3.3. Completing trace monoids with infinite traces

3.3.1. Infinite traces
Let (xn)n≥1 and (yn)n≥1 be two nondecreasing sequences of traces: xn ≤ xn+1 and yn ≤ yn+1 for all integers n ≥ 1. We

identify (xn)n≥1 and (yn)n≥1 whenever they satisfy:

(∀n ≥ 1 ∃m ≥ 1 xn ≤ ym) ∧ (∀n ≥ 1 ∃m ≥ 1 yn ≤ xm) .

This identification is an equivalence relation between nondecreasing sequences. The quotient set is denoted by M. It
is naturally equipped with a partial ordering, such that the mapping M → M associating the (equivalence class of the)
constant sequence xn = x to any trace x ∈M, is an embedding of partial orders.

We identify thus M with its image in M through the embedding M → M. The set ∂M of infinite traces is defined by:

∂M = M \M .

The set ∂M is called the boundary of M [2]. Visually, elements of ∂M correspond to infinite countable heaps, that is to
say, limiting heaps obtained by piling up countable many pieces.

3.3.2. Properties of (M, ≤)

The partially ordered set (M, ≤) is complete with respect to least upper bound of nondecreasing sequences. And any
element ξ ∈M is the least upper bound of a nondecreasing sequence of elements of M [2].

3.4. Synchronization of sequences

In this section we introduce an alternative way of looking at trace monoids, by means of vectors of words. This empha-
sizes the distributed point of view on trace monoids.

3.4.1. Network of alphabets and synchronizing trace monoid
A family (�1, . . . , �N) of N alphabets, not necessarily disjoint, is called a network of alphabets. Let � = �1 ∪ . . . ∪ �N .

Define R = {1, . . . , N} as the set of resources, and consider the product monoid

H = (�1)
∗ × . . . × (�N)∗ . (1)

Identify each a ∈ � with the element H(a) = (ai)i∈R of H defined by:

∀i ∈ R ai =
{
ε (the empty word), if a /∈ �i ,

a, if a ∈ �i .

For each letter a ∈ �, the set of resources associated with a is the subset R(a) defined by

R(a) = {i ∈ R : a ∈ �i} .

8 S. Abbes / Information and Computation 255 (2017) 1–26
Let G be the sub-monoid of H generated by the collection {H(a) : a ∈ �}. Then G is isomorphic with the trace monoid
M =M(�, I), where the independence relation I on � is defined by

(a,b) ∈ I ⇐⇒ R(a) ∩ R(b) = ∅. (2)

The monoid M is called the synchronization trace monoid, or simply the synchronization monoid, of the network
(�1, . . . , �N). Examples have been given in Section 2. It can be proved that every trace monoid is isomorphic to a syn-
chronization trace monoid [7].

3.4.2. Synchronization of sequences
Let (�1, . . . , �N) be a network of alphabets. Each monoid (�i)

∗ being equipped with the prefix ordering, we equip the
product monoid H defined in (1) with the product order, and the sub-monoid G with the induced order.

Assume given a vector of sequences Y = (Y1, . . . , Y N) ∈H. The synchronization trace of Y is defined as the following least
upper bound in G :

X =
∨

{Z ∈ G : Z ≤ Y }. (3)

This least upper bound does indeed exist in G : it is obtained by taking least upper bounds component-wise, which are all
well defined.

Identifying G with the trace monoid M defined in (2) and above, the element X is thus the largest trace among those
tuples below Y .

For example, consider the ring model with four generators introduced in Section 2.2, with �1 = {a0, a1}, �2 = {a1, a2},
�3 = {a2, a3} and �4 = {a3, a0}, and the vector:

Y =

⎛
⎜⎜⎝

a0a1a1a0
a1a2a2a1
a3a2a3a2
a0a3a0a3

⎞
⎟⎟⎠

One easily convinces oneself that the synchronization of Y is the following:

X =

⎛
⎜⎜⎝

a0a1
a1a2
a3a2
a0a3

⎞
⎟⎟⎠ corresponding to a0 · a1 · a3 · a2 in the trace monoid.

We shall see below an algorithmic way to determine the synchronization of any given vector Y ∈H.

3.4.3. On-line computation features
The algorithmic computation of the synchronization trace of a given vector of sequences might belong to the folklore of

concurrency theory, see for instance [7]. In what follows, a special emphasis is given to the distributed and on-line nature
of this computation.

The remaining of this section is devoted to provide an algorithm taking a vector of sequences Y ∈ H as input, and
outputting the synchronization trace of Y . Furthermore, the input trace Y might not be entirely known at the time of
computation. Instead, we assume that only a vector Y ′ ≤ Y feeds the algorithm, together with the knowledge whether some
further input is about to come or not. Therefore, we need our algorithm to produce the two following outputs:

1. The best approximation X ′ of the synchronization trace X of Y , given only the input Y ′ , which is merely the synchro-
nization trace of Y ′ .

2. And one of the following tags:
dl for “Deadlock” if some more input is about to come, and yet the algorithm has already reached the synchronization

trace of Y , i.e., if X ′ = X whatever the continuation of Y ′ .
wfi for “Waiting for Input” if some more input is about to come, and the trace X ′ might be extended.
eof for “End of file” if there is no more input to come.

3.4.4. Detecting deadlocks
Consider, as in Sections 3.4.1–3.4.2, a network (�1, . . . , �N) of alphabets. Given a finite word Yi ∈ (�i)

∗ , we denote by
Y i the word Y i = Yi · †i , where †i is an additional symbol which can be either eof or wfi, to be interpreted as “no more
input will ever come” if †i = eof, or as “some more input might arrive” if †i = wfi. Finally, let Y = (Y 1, . . . , Y N).

S. Abbes / Information and Computation 255 (2017) 1–26 9
We first introduce a basic routine described in pseudo-code below (Algorithm 1). The input of the routine is the vector Y .
Its output is as follows:

1. If the synchronization trace X of Y is nonempty, then the routine outputs a minimal piece of X .
2. If the synchronization trace X of Y is empty, then the routine outputs a flag ‡ explaining why X is empty:

(a) If Y = (eof, . . . , eof), then ‡ = eof. Note that this necessarily entails that Y is empty.
(b) In case at least one input component of Y does not carry the symbol †i = eof, then:

i. If adding some letters to some of the components of Y carrying †i = wfi could yield a nonempty synchronization
trace, then ‡ = wfi.

ii. If no letter can be added to the components of Y carrying †i = wfi to yield a nonempty synchronization trace,
then ‡ = dl.

To detect if a piece u is minimal in a heap, when the heap is given by its representation in G , it is necessary and
sufficient to check that it is minimal in all the coordinates where it occurs, that is to say, in all the components belonging
to the set of resources R(u). This justifies that Algorithm 1 is sound. Observe that the algorithm is nondeterministic, as
there may be several minimal pieces.

Algorithm 1 Determines a minimal piece of the synchronizing trace X of Y = (Y1, . . . , Y N).

Require: Y 1, . . . , Y N � Recall that Y i = Yi · †i
1: for all i ∈ {1, . . . , N} do
2: ui ← first letter of Y i � ui is either a real letter or †i
3: end for
4: H ← {i : ui �= eof} � The set of indices of interest
5: H ← {i : ui = eof} � The complementary set of H
6: if H = ∅ then � Case 2a of the above discussion
7: return eof

8: end if
9: K ← {i ∈ H : ui �= wfi} � The set of indices with real letters

10: if K = ∅ then � One instance of Case 2(b)i
11: return wfi

12: end if
13: for all i ∈ K do
14: if R(ui) ∩ H �= ∅ then � No chance to obtain later the
15: expected synchronization for ui

16: Mi ← dl

17: else
18: if u j = ui for all j ∈ R(ui) then � Case where ui is minimal
19: in all the expected components of Y
20: Mi ← ui

21: else
22: if u j ∈ {ui , wfi} for all j ∈ R(ui) then � Synchronization
23: for ui is possible in the future
24: Mi ← wfi

25: else
26: Mi ← dl � The piece ui is not minimal in X
27: end if
28: end if
29: end if
30: end for
31: if Mi = dl for all i ∈ K then � Case 2(b)ii: the synchronization
32: trace X is empty since it has no minimal piece
33: return dl

34: else
35: if Mi = wfi for all i ∈ K then � Case 2(b)i (again)
36: return wfi

37: else � Case 1
38: return one Mi with Mi /∈ {dl, wfi} � Any Mi /∈ {dl, wfi} is minimal
39: in the synchronization trace X
40: end if
41: end if

Algorithm 1 executes in constant time, the constant growing linearly with the number of edges in the dependence graph
(�, D) of the associated trace monoid. If communicating processes are devised, one per each alphabet, and able to write to
a common register, they will be able to perform Algorithm 1 in a distributed way. We shall not work out the details of the
distributed implementation, since it would be both outside the scope of the paper and out of the range of expertise of the
author. People from the distributed algorithms community will probably find it routine.

10 S. Abbes / Information and Computation 255 (2017) 1–26
3.4.5. Computation of the synchronization trace
With Algorithm 1 at hand, we can now give an algorithm to compute the synchronization trace of a given vector of

sequences Y ∈ H. This is the topic of the Synchronization Algorithm (Algorithm 2), of which we give the pseudo-code
below, and which takes as input a vector Y = (Y 1, . . . , Y N) of the same kind as Algorithm 1.

The Synchronization Algorithm iteratively executes Algorithm 1, and collects the minimal pieces thus obtained to form
its own output. If Y = (Y1, . . . , Y N) ∈ H and if M ≤ Y , then we denote by Z = M\Y the unique vector Z ∈ H such that
M · Z = Y .

As in the requirements stated above in Section 3.4.3, the Synchronization Algorithm outputs both the synchronization
trace of its input and a tag advertising if the computation is over, either because a deadlock has been reached or because
the input feed is over, or if it is still waiting for some input that might cause the synchronization trace computed so far to
be extended. This feature will be crucial when considering its execution on sequences of letters which are possibly infinite,
see below in Section 3.4.6.

The Synchronization Algorithm can be executed in a distributed way by N communicating processes, one for each coor-
dinate, and it runs in time linear with the size of the synchronization trace X .

Algorithm 2 Synchronization Algorithm: computes the synchronization trace of Y .

Require: Y = (Y 1, . . . , Y N) � Y i = Yi · †i
1: X ← e � Initialize the variable X with the empty heap
2: call Algorithm 1 with input Y
3: M ← output of Algorithm 1
4: while M /∈ {dl, wfi, eof} do
5: X ← X · M
6: Y ← M\Y
7: call Algorithm 1 with input Y
8: M ← output of Algorithm 1
9: end while

10: return (X, M)

3.4.6. Feeding the Synchronization Algorithm with a possibly infinite input
We have defined the synchronization trace of a vector Y ∈ H in Section 3.4.2. The same definition applies if one or

several components of Y are infinite, by putting:

X =
∨

{Z ∈ G : Z ≤ Y }, (4)

and this least upper bound is always well defined in M since least upper bounds of nondecreasing sequences always exist
in (M, ≤) as recalled in Section 3.3.2. We call the element X of M thus defined the generalized synchronization trace of Y .

Adapting the algorithmic point of view to an infinite input introduces obviously some issues, which can be addressed by
observing that the output of the Synchronization Algorithm is nondecreasing with its input. We will idealize the situation
where the Synchronization Algorithm is repeatedly fed with a nondecreasing input by saying that it is fed with a vector with
possibly infinite components. The output, possibly infinite, is defined as the least upper bound in M of the nondecreasing
sequence of finite output heaps. It coincides of course with the generalized synchronization trace X defined in (4).

To describe more precisely this procedure, consider a vector Y of sequences, some of which may be infinite. We assume
that Y is effectively given through some sampling, i.e., as an infinite concatenation of finite vectors Zk ∈H:

Y = Z1 · Z2 · Z3 · · ·
If a component of Y is finite, the corresponding component of the vector Zk will be the empty word for large enough k.

Furthermore, we assume that a primitive is able to produce, for each integer k ≥ 1, a vector Zk = Zk · †k , where †k is itself
a vector †k = (†k,i)i with †k,i ∈ {eof, wfi}, in such a way that an occurrence of eof marks the finiteness of the corresponding
component of Y . Formally, we assume that the following two properties hold, for all components:

(Yi is a finite sequence) ⇐⇒ (∃k ≥ 1 †k,i = eof)

and ∀k ≥ 1 †k,i = eof =⇒ (∀k′ ≥ k †k′,i = eof)

The Generalized Synchronization Algorithm, the pseudo-code of which is given below in Algorithm 3, is then recursively
fed with Z 1, Z 2, . . . , writing out to its output register X . The output of Algorithm 3 is the least upper bound, in M, of the
sequence of heaps that recursively appear in the register X .

The Generalized Synchronization Algorithm exits its while loop if and only if the generalized synchronization trace is
finite. In all cases, its output (as defined above) is the generalized synchronization trace of the vector Y , regardless of the
decomposition (Zk)k≥1 that feeds its input.

S. Abbes / Information and Computation 255 (2017) 1–26 11
Algorithm 3 Generalized Synchronization Algorithm.

Require: (Zk)k≥1 � The Zks recursively feed the input
1: X ← e � Initialize the variable X with the empty heap
2: k ← 1
3: call Algorithm 2 with input Z 1

4: (U , †) ← output of Algorithm 2 � † ∈ {eof, dl, wfi}
5: while † = wfi do
6: X ← X · U
7: k ← k + 1
8: call Algorithm 2 with input Zk

9: (U , †) ← output of Algorithm 2
10: end while

4. Preliminaries on probabilistic trace monoids

We denote by R∗+ the set of positive reals.

4.1. Bernoulli and finite Bernoulli sequences

In this section we collect classical material found in many textbooks [5]. We pay a special attention to presenting this
material so as to prepare for its generalization to trace monoids.

4.1.1. Bernoulli sequences
Classically, a Bernoulli sequence on an alphabet � is an infinite sequence (Xn)n≥1 of independent and identically dis-

tributed (i.i.d.) random variables, where each Xi takes its values in �. In order to eliminate degenerated cases, we assume
that the common probability distribution, say ρ , over � of all Xi is positive on �; hence ρ is bound to satisfy:

∀a ∈ � ρa > 0 ,
∑
a∈�

ρa = 1 .

4.1.2. Bernoulli measures
The canonical probability space associated with the Bernoulli sequence (Xn)n≥1 is the triple (∂�∗, F, P) defined as fol-

lows: the set ∂�∗ is the set of infinite sequences with values in �. The σ -algebra F is the σ -algebra generated by the
countable collection of elementary cylinders ↑ x, for x ranging over the free monoid �∗ , and defined by

↑ x = {ω ∈ ∂�∗ : x ≤ ω} ,

where x ≤ ω means that the infinite sequence ω starts with the finite word x. Finally, P is the unique probability measure
on (∂�∗, F) which takes the following values on elementary cylinders:

∀x ∈ �∗ P(↑ x) = f (x) ;
here f : �∗ →R∗+ is the unique positive function satisfying:

∀a ∈ � f (a) = ρa , ∀x, y ∈ �∗ f (xy) = f (x) f (y) , (5)

where xy denotes the concatenation of words x and y. Bernoulli sequences correspond exactly to probability measures P
on (∂�∗, F) with the following property:

∀x ∈ �∗ P(↑ x) > 0 ,

∀x, y ∈ �∗ P
(↑ (xy)

) = P(↑ x)P(↑ y) .

Such probability measures on (∂�∗, F) are called Bernoulli measures.

4.1.3. Uniform Bernoulli measure
Among Bernoulli measures associated with the alphabet �, one and only one is uniform, in the following sense:

∀x, y ∈ �∗ |x| = |y| =⇒ P(↑ x) = P(↑ y) ,

where |x| denotes the length of the word x. It is characterized by P(↑ x) = p|x| , where p0 = 1/|�|.
0

12 S. Abbes / Information and Computation 255 (2017) 1–26
4.1.4. Finite Bernoulli sequences
Let ρ = (ρa)a∈� be a sub-probability distribution over �, hence bound to satisfy:

∀a ∈ � ρa > 0 ,
∑
a∈�

ρa < 1 .

To each sub-probability distribution ρ we associate the function f : �∗ → R defined as in (5), and also the following
quantities:

ε = 1 −
∑
a∈�

ρa , Z =
∑

x∈�∗
f (x) = 1

ε
< ∞ .

Finally we define the sub-Bernoulli measure νρ as the probability distribution over the countable set �∗ , equipped with the
discrete σ -algebra, and defined by:

∀x ∈ �∗ νρ({x}) = 1

Z
f (x) .

A finite Bernoulli sequence is the random sequence of letters that compose a word x ∈ �∗ , drawn at random according to
the probability measure νρ on �∗ .

An effective way to produce a finite Bernoulli sequence according to a sub-probability distribution p = (pi)i is the follow-
ing. Consider a stopping symbol eof, and extend p to a probability distribution by setting p(eof) = 1 − ∑

i pi . Then output
a Bernoulli sequence according to p, until the symbol eof first occurs. The letters before the first occurrence of eof form
the sought finite sequence.

4.1.5. Full elementary cylinders
It is convenient to consider the following completion of �∗:

�∗ = �∗ ∪ ∂�∗ .

Hence both Bernoulli measures and sub-Bernoulli measures are now defined on the same space �∗ . For each word
x ∈ �∗ , we define the full elementary cylinder ⇑ x as follows:

⇑ x = {ξ ∈ �∗ : x ≤ ξ} .

Here, x ≤ ξ has the same meaning as above if ξ is an infinite sequence, and it means that x is a prefix of ξ if ξ is a finite
word. We gather the description of both Bernoulli and sub-Bernoulli measures in the following result.

Theorem 4.1. Let P be a probability measure on �∗ = �∗ ∪ ∂�∗ . Assume that the function f : �∗ → R defined by f (x) = P(⇑ x) is
positive multiplicative, that is to say, satisfies:

∀x ∈ �∗ f (x) > 0

∀x, y ∈ �∗ f (xy) = f (x) f (y) .

Define ρ = (ρa)a∈� and ε by:

∀a ∈ � ρa = f (a) , ε = 1 −
∑
a∈�

ρa .

Then one and only one of the two following possibilities occurs:

1. ε = 0. In this case, P is concentrated on ∂�∗ , and characterized by:

∀x ∈ �∗ P(↑ x) = P(⇑ x) = f (x) .

The series
∑

x∈�∗ f (x) is divergent, and P is a Bernoulli measure.
2. ε > 0. In this case, P is concentrated on �∗ . The series Z = ∑

x∈�∗ f (x) is convergent, and satisfies:

ε = 1

Z
, ∀x ∈ �∗ P({x}) = ε f (x) .

The measure P is a sub-Bernoulli measure.

4.2. Bernoulli and sub-Bernoulli measures on trace monoids

The notions of Bernoulli measure and of sub-Bernoulli measure extend to trace monoids the notions of Bernoulli se-
quences and of finite Bernoulli sequences. They provide a theoretical ground for concurrency probabilistic models, in the
framework of trace monoids.

S. Abbes / Information and Computation 255 (2017) 1–26 13
4.2.1. Valuations
Let R∗+ be equipped with the monoid structure (R∗+, ×, 1). A valuation on a trace monoid M = M(�, I) is a morphism

of monoids f :M →R∗+ . It is thus a function f :M →R∗+ satisfying:

f (e) = 1 , ∀x, y ∈ M f (x · y) = f (x) f (y).

4.2.2. Möbius transform; Möbius and sub-Möbius valuations
Let f :M →R be a valuation. The Möbius transform of f is the function h : C →R defined by:

∀c ∈ C h(c) =
∑

c′∈C : c′≥c

(−1)|c′|−|c| f (c′), only defined on cliques. (6)

An alternative expression for the Möbius transform is the following. For each clique c ∈ C , let M(c) be the sub-trace
monoid generated by those letters a ∈ � such that a ‖ c. Here, a ‖ c reads as “a parallel to c”, and means that (a, b) ∈ I for
all letters b that occur in the clique c. Then:

h(c) = f (c) · μM(c) (t1, . . . , tN) , with ti = f (ai) , (7)

where μM(c) denotes the multivariate Möbius polynomial (see Section 3.1.4) of the trace monoid M(c) . By convention, the
expression μM(c) (t1, . . . , tN) actually involves only the variables ti associated with those generators belonging to M(c) .

In particular, h(e) = μM(t1, . . . , tN)—that was already observable on (6).
Following [2], a valuation f is said to be:

1. A Möbius valuation if:

h(e) = 0 , ∀c ∈ C h(c) > 0 . (8)

2. A sub-Möbius valuation if:

h(e) > 0 , ∀c ∈ C h(c) > 0 . (9)

Equivalently, as seen from (7), if � = {a1, . . . , aN} and if we put ti = f (ai) for i ∈ {1, . . . , N}, then f is:

1. A Möbius valuation if:

μM(t1, . . . , tN) = 0 , ∀c ∈ C μM(c) (t1, . . . , tN) > 0 . (10)

2. A sub-Möbius valuation if:

μM(t1, . . . , tN) > 0 , ∀c ∈ C μM(c) (t1, . . . , tN) > 0 . (11)

4.2.3. Cylinders and σ -algebras on M and on ∂M
Recall that we have introduced infinite traces in Section 3.3, yielding the completion M=M ∪ ∂M.
To each trace x ∈M, we associate the elementary cylinder ↑ x ⊆ ∂M and the full elementary cylinder ⇑ x ⊆M, defined as

follows:

⇑ x = {ξ ∈ M : x ≤ ξ} , ↑ x = {ξ ∈ ∂M : x ≤ ξ} =⇑ x ∩ ∂M .

The set M is equipped with the σ -algebra F generated by the collection of full elementary cylinders, and the set ∂M
is equipped with the σ -algebra F induced by F on ∂M. Both σ -algebras are Borel σ -algebras for compact and metrizable
topologies. The restriction of F to M is the discrete σ -algebra.

4.2.4. Multiplicative probability measures
In order to state an analogous result to Theorem 4.1 for trace monoids, we introduce the following definition, borrowed

from [2].

Definition 4.2. A probability measure P on (M, F) is said to be multiplicative whenever it satisfies the following property:

∀x ∈ M P(⇑ x) > 0 ,

∀x, y ∈ M P
(⇑ (x · y)

) = P(⇑ x) · P(⇑ y) .

We define the valuation f :M →R associated with P and the number ε by:

∀x ∈ M f (x) = P(⇑ x) , ε = h(e) ,

where h : C →R is the Möbius transform of f .

14 S. Abbes / Information and Computation 255 (2017) 1–26
The relationship between multiplicative measures and Möbius and sub-Möbius valuations is as follows [2,3].

Theorem 4.3. There is a bijective correspondence between multiplicative measures P and valuations which are either Möbius or
sub-Möbius. The alternative is the following:

1. ε = 0. The valuation is Möbius. In this case, P is concentrated on ∂M and characterized by:

∀x ∈ M P(↑ x) = f (x) .

The series
∑

x∈M f (x) is divergent. We say that P is a Bernoulli measure.
2. ε > 0. The valuation is sub-Möbius. In this case, P is concentrated on M and satisfies:

∀x ∈ M P({x}) = ε f (x) .

The series Z = ∑
x∈M f (x) is convergent and satisfies Z = 1/ε. We say that P is a sub-Bernoulli measure.

4.2.5. Uniform multiplicative measures
A valuation f : M → R is said to be uniform if f (a) is constant, for a ranging over �. This is equivalent to saying that

f (x) only depends on the length of x, and also equivalent to saying that f (x) = p|x| for some real p.
A multiplicative measure is uniform if the associated valuation is uniform. The following result describes uniform mul-

tiplicative measures [2,3]. They are related to the root of smallest modulus of the Möbius polynomial of the trace monoid
(see Section 3.1.3).

Theorem 4.4. Uniform multiplicative measures P on a trace monoid M are in bijection with the half closed interval (0, p0], where p0
is the root of smallest modulus of μM . The correspondence associates with P the unique real p such that P(⇑ x) = p|x| for all x ∈M.

The alternative is the following:

1. p = p0 . In this case, P is Bernoulli (concentrated on the boundary).
2. p < p0 . In this case, P is sub-Bernoulli (concentrated on the monoid).

4.2.6. Extension and restriction of valuations
We shall need the following result for the construction of the PFSA in Section 6.3.

Theorem 4.5. Let M =M(�, I) be an irreducible trace monoid.

1. Let f : M → R∗+ be a Möbius valuation, let �′ be any proper subset of � and let M′ be the submonoid of M generated by �′ .
Then the restriction f ′ :M′ → R∗+ of f to M′ is a sub-Möbius valuation.

2. Let �′ = � \ {a}, where a is any element of �, let M′ be the submonoid of M generated by �′ , and let f ′ : M′ → R∗+ be a
sub-Möbius valuation. Then there exists a unique Möbius valuation f :M →R∗+ that extends f ′ on M′ .

Proof. Proof of point 1. Let f , f ′ and �′ be as in the statement. Let also h and h′ denote the Möbius transforms of f and
of f ′ . Let S be the series with nonnegative terms:

S =
∑

x∈M′
f (x).

We claim that this series is convergent. To prove it, recall from [6] that a pair (γ , γ ′) of cliques is said to be in normal
form, denoted by γ → γ ′ , if ∀b ∈ γ ′ ∃a ∈ γ (a, b) /∈ I . Any trace x ∈M can be uniquely written as a product x = γ1 · . . . · γk
of cliques such that γi → γi+1 holds for all i = 1, . . . , k − 1.

Let the nonnegative matrices A = (Aγ ,γ ′)(γ ,γ ′)∈C×C and B = (Bγ ,γ ′)(γ ,γ ′)∈C×C , where C denotes the set of nonempty
cliques of M, be defined by:

Aγ ,γ ′ = 1(γ ∈ M′) · 1(γ ′ ∈ M′) · 1(γ → γ ′) · f (γ ′), Bγ ,γ ′ = 1(γ → γ ′) · f (γ ′).
It follows from the existence and uniqueness of the normal form for traces, decomposing the traces x ∈ M according to

the number of terms of their normal form, that the series S writes as:

S = 1 +
∑
k≥1

I · Ak · J = 1 + I ·
(∑

k≥1

Ak
)

· J ,

where I and J are row and column vectors filled with 1s. We know by [1, Lemma 6.4] that the matrix B has spectral
radius 1, since f is assumed to be Möbius, and that it is a primitive matrix since M is irreducible. But A ≤ B with A �= B .
Therefore, it follows from the Perron–Frobenius Theorem [21] that A has spectral radius < 1 and thus that the series S is
convergent.

S. Abbes / Information and Computation 255 (2017) 1–26 15
By the Möbius inversion formula [23], it entails that the relation
(∑

x∈M′ f (x)
) · h′(e) = 1 holds in the fields of reals.

Hence h′(e) > 0. It remains to prove that h′(δ) > 0 also holds for any nonempty clique δ of M′ . This is a bit easier to prove.
For any nonempty clique δ of M′ , let M′ (δ) and M(δ) be the submonoids of M′ and of M respectively, defined as in
Section 4.2.2. Then M′ (δ) ⊆M(δ) , hence the following inequalities between series with nonnegative terms hold:∑

x∈M′ (δ)

f (x) ≤
∑

x∈M(δ)

f (x) = 1

h(δ)
< ∞.

Therefore, as above, the equality h′(δ) · (∑x∈M′ (δ) f (x)
) = 1 holds in the field of reals, proving that h′(δ) > 0, which com-

pletes the proof that f ′ is a sub-Möbius valuation.

Proof of point 2. Let a, �′ and f ′ : M′ → R∗+ be as in the statement. Let also h′ : C ′ → R be the Möbius transform
of f ′ , where C ′ is the set of cliques of M′ . Assuming that a Möbius extension f : M → R∗+ of f ′ exists, we first prove
its uniqueness. For each positive real t , let ft : M → R be the valuation defined by ft(a) = t and ft(α) = f ′(α) for α ∈ �′ .
Then any valuation on M extending f ′ is of the form ft for some t . Let ht : C →R denote the Möbius transform of ft . We
evaluate ht(e) as follows:

ht(e) =
∑

γ ∈C : a∈γ

(−1)|γ | ft(γ) +
∑

γ ∈C : a/∈γ

(−1)|γ | ft(γ).

On the one hand, observing the equality of sets C ′ = {γ ∈ C : a /∈ γ }, we recognize h′(e) in the second sum. On the
other hand, using the notation already introduced a ‖ γ , for γ ∈ C , to denote that a /∈ γ and a ·γ ∈ C , the range of the first
sum above is in bijection with the set of cliques δ ∈ C ′ such that a ‖ δ, the bijection associating δ with γ = a · δ. We then
have (−1)|γ | ft(γ) = (−t) · (−1)|δ| f ′(δ). Henceforth:

ht(e) = (−t) · K + h′(e), with K = 1 − K ′ and K ′ =
∑

δ∈C ′ : a‖δ∧δ �=e

(−1)|δ|+1 f ′(δ).

Let X be a random trace associated with the sub-Möbius valuation f ′ . We evaluate the probability of the event U =
{∃b ∈ �′ : a ‖ b ∧ a ≤ X}. The inclusion–exclusion principle yields:

P(U) =
∑

δ∈C ′ : a‖δ∧δ �=e

(−1)|δ|+1P(X ≥ δ) = K ′,

the latter equality since P(X ≥ δ) = f ′(δ) by definition of X . The event U has probability less than 1, otherwise all pieces of
�′ would be parallel to a, contradicting that M is irreducible. We deduce that K ′ ∈ [0, 1) and thus K ∈ (0, 1]. In particular,
if ft is Möbius, it entails that ht(e) = 0, and since we have just seen that K �= 0, it implies that t = h′(e)/K , proving the
sought uniqueness.

Let us now prove the existence of a Möbius extension f . Let M(δ) denote as above, for any clique δ ∈ C , the sub-monoid
of M generated by those letters b ∈ � such that b ‖ δ. For each δ ∈ C , we introduce the formal series:

Gδ(t) =
∑

x∈M(δ)

ft(x).

Now, let t0 be the radius of convergence of the power series Ge(t) = ∑
x∈M ft(x). Since all the power series Gδ(t) have

nonnegative coefficients, they satisfy Gδ(t) ≤ Ge(t) < ∞ for all t ∈ [0, t0). In particular, the radius of convergence rδ of Gδ

satisfies rδ ≥ t0. Actually, reasoning as in the proof of point 1 and invoking the Perron–Frobenius Theorem, we see that the
strict inequality rδ > t0 holds for all δ �= e. Therefore, for all δ �= e, the series Gδ(t0) is convergent, and thus the Möbius
inversion formula yields the following equality in the field of reals: Gδ(t0) · ht0 (δ) = 1. We conclude that ht0 (δ) > 0 for all
cliques δ �= e. Since ht0(e) = 0, we conclude that ft0 is the sought Möbius valuation extending f ′ . �
5. The Probabilistic Synchronization Algorithm

In this section we consider a network of alphabets sharing some common letters. We then wish to generate random
traces of the synchronization monoid, in a distributed and incremental way. The first idea that comes in mind is to generate
local Bernoulli sequences, and to see what is the synchronization trace of these sequences. This constitutes the Probabilistic
Synchronization Algorithm, which is thus a probabilistic variant of the Generalized Synchronization Algorithm which was
described in Algorithm 3.

The random traces thus obtained can be either finite or infinite. In all cases their probability distribution is multiplicative,
hence the theory of Bernoulli and sub-Bernoulli measures for trace monoids is the adequate tool for their study. After having
established this rather easy result, we turn to specific examples. We obtain the nontrivial result that for path models, any
Bernoulli or sub-Bernoulli measure can be generated by this simple technique.

16 S. Abbes / Information and Computation 255 (2017) 1–26
5.1. Description of the PSA

Let (�1, . . . , �N) be a network of N alphabets with N ≥ 2, let � = �1 ∪ . . . ∪ �N , and let M = M(�, I) be the syn-
chronization trace monoid, as described in Section 3.4.1. Recall that we identify M with the sub-monoid G ⊆H defined in
Section 3.4.1, and that indices in 1, . . . , N are seen as resources.

Assume that, to each resource i ∈ {1, . . . , N}, is attached a device able to produce a �i-Bernoulli sequences Yi , either
finite or infinite, with a specified probability or sub-probability distribution pi on �i . As we have seen in Section 4.1.4, the
generation of such Bernoulli sequences is effective, together with the information that the sequence is over in case where
pi is a sub-probability distribution.

Henceforth, it is straightforward for each device to produce a sampling of Yi under the form Zi,1 · Zi,2 · . . . , and moreover
to tag each sub-sequence Zi,k with an additional symbol †i,k ∈ {eof, wfi} in order to deliver a sequence (Z i,k)k≥1 with
Z i,k = Zi,k · †i,k as specified in Section 3.4.6. The symbol †i,k is given the value wfi until the device decides the sequence is
over (if it ever does), after which the symbol †i,k is given the value eof.

The Probabilistic Synchronization Algorithm (PSA), the pseudo-code of which is given below in Algorithm 4, consists in
executing in parallel both the local generation of the sequences Y1, . . . , Y N , and the Generalized Synchronization Algorithm
described previously in Algorithm 3.

Algorithm 4 Probabilistic Synchronization Algorithm.
Require: p1, . . . , pN � Probability or sub-probability distributions
1: while Algorithm 3 does not exit do
2: for all i ∈ {1, . . . , N} do
3: for all k = 1, 2, . . . do
4: generate the kth sampling Z i,k of a Bernoulli sequence according to pi

5: feed Algorithm 3 with Z i,k

6: end for
7: end for
8: end while

5.2. Analysis of the algorithm

5.2.1. Distribution of PSA random traces
The trace y ∈M, output of the execution of the PSA (Algorithm 4), is random. What is its distribution?

Theorem 5.1. The probability distribution P of the random trace produced by the PSA is a multiplicative probability measure on M.
The valuation f :M →R associated with this measure by f (x) = P(⇑ x) is such that:

∀a ∈ � f (a) =
∏

i∈R(a)

pi(a) , (12)

where pi is the probability or sub-probability distribution on �i , and R(a) is the set of resources associated with a.

Proof. For each letter a ∈ �, let qa be the real number defined by:

qa =
∏

i∈R(a)

pi(a) .

Let y ∈M be the random trace produced by the PSA. Fix z ∈ M a trace, and let (z1, . . . , zN) be the representation of z
in G . Then y ≥ z holds if and only if, for every index i ∈ {1, . . . , N}, the corresponding sequence xi starts with zi .

Let z = a1 · . . . · a j be any decomposition of z as a product of generators ak ∈ �. Since each sequence xi produced by the
device number i is Bernoulli or sub-Bernoulli with distribution or sub-distribution pi , and since the sequences are mutually
independent, we thus have:

P(y ≥ z) =
j∏

k=1

qak .

In other words, if f : M → R is the valuation defined by (12), one has P(⇑ z) = f (z). This shows that P is multiplica-
tive. �
5.2.2. Small values

We shall see that not all multiplicative probabilities on M can be reached by this technique. However, as long as only
“small values” are concerned, the PSA can reach any target multiplicative measure. Let us first introduce the following

S. Abbes / Information and Computation 255 (2017) 1–26 17
convention: if f : M → R is a valuation, and if ε is a real number, we denote by ε f the valuation which values on
generators are given by:

∀a ∈ � (ε f)(a) = ε f (a) .

Hence the value of ε f on arbitrary traces are given by:

∀x ∈ M (ε f)(x) = ε|x| f (x) .

The following result states that, at the expense of having small synchronizing traces, the relative frequency of letters in
traces produced by the PSA suffers from no constraint.

Proposition 5.2. Let (�1, . . . , �N) be N alphabets, let M = M(�, I) be the synchronization trace monoid, and let t : M → R be
a valuation on M. Then there exists ε > 0 and sub-probability distributions (pi)1≤i≤N , with pi a sub-probability distribution on �i ,
such that the valuation f characterizing the random trace y ∈M produced by the PSA with respect to (pi)1≤i≤N , satisfies:

f = εt .

Proof. For ε > 0 to be specified later, let (pi)1≤i≤N be the family of real valued functions, pi : �i → R, defined by:

∀a ∈ �i pi(a) = (
εt(a)

)1/|R(a)|
.

For ε > 0 small enough, all pi are sub-probability distributions over �i . According to Theorem 5.1, the valuation f
describing the distribution of the random trace produced by the PSA satisfies:

f (a) =
∏

i∈R(a)

pi(a) = εt(a) .

The proof is complete. �
5.2.3. Reduction to irreducible trace monoids

Assume that the trace monoid is not irreducible. Hence the dependence relation (�, D) has several connected compo-
nents, let us say that it has two components (S1, D1) and (S2, D2) to simplify the discussion.

Let I1 and I2 be the dependence relations on S1 and S2 defined by:

I1 = (S1 × S1) ∩ I = (S1 × S1) \ D1 , I2 = (S2 × S2) ∩ I = (S2 × S2) \ D2 .

Putting M1 =M(S1, I1) and M2 =M(S2, I2), we have:

M = M1 ×M2 , M = M1 ×M2 .

It follows from Theorem 5.1 that the distribution P of the random trace y produced by the PSA is a tensor product
P1 ⊗P2; probabilistically speaking, y is obtained as the concatenation of two independent traces y1 ∈M1 and y2 ∈M2. The
probability measures P1 and P2, of y1 and y2 respectively, are identical as those deriving from PSA algorithms restricted
to the alphabets concerning S1 and S2 respectively.

In conclusion, the PSA algorithm decomposes as a product of sub-PSA algorithms on the irreducible components of
the synchronization trace monoid. Hence there is no loss of generality in assuming, for the sake of analysis, that the
synchronization trace monoid is irreducible.

5.3. Example: the path model

The path model is close to the dimer model, a topic of numerous studies in Combinatorics and in Statistical Physics [22,
15]. Here we shall see that the path model is a framework where the PSA works at its best, in the sense that any multi-
plicative measure on M can be obtained through the PSA.

The path model is defined as the trace monoid M = M(�, I) on N + 1 generators: � = {a0, . . . , aN}, where N ≥ 0 is a
fixed integer. The independence relation is defined by:

I = {(ai,a j) : |i − j| > 1} .

Then M is the synchronization monoid of the N-tuple of alphabets (�1, . . . , �N) with �i = {ai−1, ai} for i ∈ {1, . . . , N}.
The set of resources of ai is:

R(ai) =

⎧⎪⎨
⎪⎩

{1}, if i = 0,

{N}, if i = N,

{i, i + 1}, if 0 < i < N .

(13)

18 S. Abbes / Information and Computation 255 (2017) 1–26
Assume that each of the N alphabets �1, . . . , �N is equipped with a positive probability distribution, say p1, . . . , pN .
Then, with probability 1, all tuples (x1, . . . , xN), where xi is a Bernoulli infinite sequence distributed according to pi , are
synchronizing. Indeed, each xi contains infinitely many occurrences of ai−1 and of ai , and this is enough to ensure the
synchronization. Therefore, the PSA yields a multiplicative measure entirely supported by the set of infinite traces of M,
hence a Bernoulli measure on ∂M.

Actually, the following result shows that every Bernoulli measure on the path model can be obtained through the execu-
tion of the PSA.

Theorem 5.3. Let P be a Bernoulli measure on ∂M, where M is the synchronization monoid associated with the path model. For
i ∈ {0, . . . , N}, put:

ti = P(↑ ai) .

Then there exists a unique tuple (p1, . . . , pN), with pi a positive probability distribution over �i = {ai−1, ai}, such that the random
infinite trace ξ ∈ ∂M produced by the PSA based on (p1, . . . , pN) has the distribution probability P.

The probability distributions p1, . . . , pN are computed recursively by:

p1(a0) = t0 , p1(a1) = 1 − t0 , (14)

i ∈ {2, . . . , N} pi(ai−1) = ti−1

pi−1(ai−1)
, pi(ai) = 1 − pi(ai−1) . (15)

Remark. The relations (14)–(15) are necessary conditions, almost immediate to establish from the result of Theorem 5.1.
What is not obvious is that the numbers thus defined stay within (0, 1), yielding indeed probability distributions (

pi(ai−1) pi(ai)
)

over �i , and that pN (aN) = tN .

Proof. Let f : M → R be the valuation associated with P. According to Theorem 4.3, f is a Möbius valuation—we will use
this fact in a moment.

Proof of uniqueness of (p1, . . . , pN) and proof of (14)–(15). With respect to a tuple (p1, . . . , pN) of positive probability dis-
tributions over (�1, . . . , �N), the PSA produces a random infinite trace ξ ∈ ∂M. Let g :M →R be the valuation associated
with the probability distribution of ξ . Then, according to Theorem 5.1, one has:

∀i ∈ {0, . . . , N} g(ai) =
∏

r∈R(ai)

pr(ai) .

Referring to (13), f = g is equivalent to:

t0 = p1(a0), (16)

tN = pN(aN), (17)

0 < i < N ti = pi(ai)pi+1(ai). (18)

It follows at once that the tuple (p1, . . . , pN) inducing P through the PSA, if it exists, is unique and satisfies necessarily
the recurrence relations (14)–(15).

Proof of existence of (p1, . . . , pN). Instead of starting from the recurrence relations (14)–(15), we use a different formula-
tion. For i ∈ {−1, . . . , N}, let M0,i be the sub-trace monoid of M generated by {a0, . . . , ai}. Let also μ0,i be the evaluation
on (t0, . . . , ti) of the multivariate Möbius polynomial of M0,i (see Section 3.1.4). Hence:

μ0,−1 = 1

μ0,0 = 1 − t0

μ0,1 = 1 − t0 − t1

μ0,2 = 1 − t0 − t1 − t2 + t0t2

μ0,3 = 1 − t0 − t1 − t2 − t3 + t0t2 + t0t3 + t1t3

μ0,4 = 1 − t0 − t1 − t2 − t3 − t4 + t0t2 + t0t3 + t0t4 + t1t3 + t1t4 + t2t4 − t0t2t4

· · ·
For any i ∈ {−1, . . . , N − 2}, the monoid M0,i coincides with the sub-monoid M(ci) as defined in Section 4.2.2, where ci

is the following clique of M:

S. Abbes / Information and Computation 255 (2017) 1–26 19
ci =
{

ai+2 · ai+4 · · aN , if N − i ≡ 0 mod 2,

ai+2 · ai+4 · · aN−1 , if N − i ≡ 1 mod 2.

The clique ci is nonempty as long as i < N − 1. Therefore, according to (10), the Möbius conditions on f ensure the
positivity of all numbers μ0,i for i < N − 1.

Let i ∈ {0, . . . , N − 2}. Any clique γ of M0,i+1 either belongs to M0,i , or contains an occurrence of ai+1. In the later
case, this clique γ is of the form γ = ai+1 · γ ′ , with γ ′ ranging over cliques of M0,i−1. It follows at once that the following
recurrence relation holds:

0 ≤ i < N − 1 μ0,i+1 = μ0,i − ti+1μ0,i−1 . (19)

Similarly, any clique γ of M0,N is either contained in M0,N−2, or it contains an occurrence of aN−1, in which case it
writes as γ = aN−1 · γ ′ with γ ′ ranging over cliques of M0,N−3, or it contains occurrence of aN , in which case it writes
as γ = aN · γ ′ with γ ′ ranging over cliques of M0,N−2. We deduce: μ0,N = μ0,N−2 − tN−1μ0,N−3 − tNμ0,N−2. But μ0,N is
the evaluation on (t0, . . . , tN) of the multivariate Möbius polynomial of M = M0,N , hence μ0,N = 0 since f is a Möbius
valuation. We obtain:

(1 − tN)μ0,N−2 − tN−1μ0,N−3 = 0. (20)

Now, since all the numbers μ0,i for i ∈ {−1, . . . , N − 2} are positive, we define the family (pi)1≤i≤N as follows:

p1(a0) = t0 , p1(a1) = 1 − t0 , (21)

1 < i < N pi(ai−1) = ti−1
μ0,i−3

μ0,i−2
, pi(ai) = μ0,i−1

μ0,i−2
, (22)

pN(aN−1) = 1 − tN , pN(aN) = tN . (23)

All numbers appearing in (21), (22) and (23) are positive, and equations (16) and (17) are satisfied. As for (18), we write,
for 1 < i < N − 1:

pi(ai)pi+1(ai) = μ0,i−1

μ0,i−2
ti

μ0,i−2

μ0,i−1
= ti .

For i = N − 1, we have:

pN−1(aN−1)pN(aN−1) = μ0,N−2

μ0,N−3
(1 − tN) = tN−1 ,

where the latter equality holds by (20). We have shown so far that (16), (17) and (18) are satisfied.
It remains to see that all

(
pi(ai−1) pi(ai)

)
, for i ranging over {2, . . . , N − 1}, are positive probability vectors, since this

is trivially true for i = 1 and for i = N . We have already observed that they are all positive vectors. For 1 < i < N , one has:

pi(ai) + pi(ai−1) = μ0,i−1 + ti−1μ0,i−3

μ0,i−2
= 1,

by virtue of (19). Hence each pi is indeed a positive probability distribution on �i , which completes the proof. �
Theorem 5.3 can be adapted to the case of sub-Bernoulli measures instead of Bernoulli measures, still for the path model,

as follows. In a nutshell: every sub-Bernoulli measure can be simulated by synchronization of sub-Bernoulli sequences, but
there is no uniqueness in the choice of the local sub-probability distributions.

Theorem 5.4. Let P be a sub-Bernoulli measure on M, where M is the synchronization monoid associated with the path model. For
i ∈ {0, . . . , N}, put:

ti = P(↑ ai) .

Then there exists a tuple (p1, . . . , pN), with pi either a probability or a sub-probability distribution over �i = {ai−1, ai}, such that
the random trace ξ ∈M produced by the PSA based on (p1, . . . , pN) is finite with probability 1 and has the distribution P.

Proof. Using the same notations as in the proof of Theorem 5.3, we define (pi)1≤i≤N as follows:

p1(a0) = t0 , p1(a1) = 1 − t0 , (24)

1 < i < N pi(ai−1) = ti−1
μ0,i−3

μ0,i−2
, pi(ai) = μ0,i−1

μ0,i−2
, (25)

pN(aN−1) = tN−1

pN−1(aN−1)
, pN(aN) = tN . (26)

20 S. Abbes / Information and Computation 255 (2017) 1–26
The only difference with the definitions introduced in the proof of Theorem 5.3 lies in (26). As a consequence, all pi(ai−1)

and pi(ai) are positive. They satisfy pi(ai)pi+1(ai) = ti for all i ∈ {2, . . . , N − 1}, and obviously p1(a0) = t0 and pN (aN) = tN .
What remains to be proved is that the sums pi(ai−1) + pi(ai) stay within (0, 1] for all i ∈ {1, . . . , N}.

For i ∈ {1, . . . , N − 1}, the sum is 1, just as in the proof of Theorem 5.3. And for i = N , we have:

pN(aN−1) + pN(aN) ≤ 1 ⇐⇒ tN + tN−1
μ0,N−3

μ0,N−2
≤ 1

⇐⇒ μ0,N−2 − tNμ0,N−2 − tN−1μ0,N−3 ≥ 0

⇐⇒ μM(t0, . . . , tN) ≥ 0

The last condition is satisfied since P is a sub-Bernoulli measure. The proof is complete. �
5.4. Finitary cases

5.4.1. Example of a ring model
Consider the ring model already introduced in Section 2.2. The trace monoid is:

M = 〈a0,a1,a2,a3 | a0a2 = a2a0, a1a3 = a3a1〉.
This is the synchronization monoid associated with the network of alphabets (�0, �1, �2, �3) given by �0 = {a3, a0}, �1 =
{a0, a1}, �2 = {a1, a2} and �3 = {a2, a3}. Contrasting with the path model, we shall see on an example that the PSA for this
ring model with four generators produces finite traces with probability 1.

Let p0, . . . , p3 be uniform distributions on �0, . . . , �3. According to Theorem 5.1, the PSA yields a multiplicative and
uniform probability measure P on M with parameter p = (1/2)(1/2) = 1/4:

∀x ∈ M P(⇑ x) =
(1

4

)|x|
. (27)

The Möbius polynomial of M is μM(t) = 1 −4t +2t2, whose root of smallest modulus is p0 = 1 −1/
√

2. Since 1/4 < p0,
it follows from Theorem 4.4 that the PSA produces a finite trace y ∈M with probability 1.

The average length of y is easily computed. Following the notations introduced in Section 4.2, we put G(z) = ∑
x∈M z|x| ,

p = 1/4 and ε = μM(p). Using that P(y = x) = εp|x| and G(z) = 1/μM(z), we have:

E|y| =
∑

x∈M
|x|P(y = x) = εp

dG

dz

∣∣∣[z=p] = −p
μ′

M(p)

μM(p)
= 6.

5.4.2. Generalization: trees and cycles
Since the probability distribution of the random element produced by the PSA is a multiplicative probability measure,

we know by Theorem 4.3 that the trace is either finite with probability 1 or infinite with probability 1. The examples
studied above show that both cases may occur indeed.

It turns out that the dichotomy is solved by a simple criterion, as stated below.

Proposition 5.5. Assume that the synchronization monoid M = M(�, I) associated with a tuple of alphabets (�1, . . . , �N) is
irreducible, and let D be the dependence relation ofM. Let p1, . . . , pN be positive probability distributions on �1, . . . , �N respectively.
Then

1. The PSA based on (p1, . . . , pN) produces an infinite trace with probability 1 if and only if:
(a) i �= j =⇒ |�i ∩ � j | ≤ 1; and
(b) the nonoriented graph (�, D) has no cycle.

2. If the output X of the PSA is finite with probability 1, then the length |X | has a finite average.

Proof. Assume first that both conditions 1a and 1b are met. Let Y = (Yi)i∈� be a tuple of infinite sequences Yi ∈ (�i)
ω . With

probability 1, for any distinct i and j such that �i ∩ � j �= ∅, the sequence Yi has infinitely many occurrences of the unique
element belonging to �i ∩ � j . Just as in the case of the path model, this is enough to guarantee that the synchronization
trace of Y is infinite.

Conversely, assume that one of conditions 1a and 1b is not met. Consider first the case of condition 1a not being met.
Let i and j be distinct indices such that �i ∩ � j has at least two distinct elements a and b. Let Y = (Yr)r∈� be a random
vector of sequences such that the synchronization trace of Y is infinite. Since M is assumed to be irreducible, we observe
that, with probability 1, if the synchronization trace of Y is infinite then all coordinates of Y are infinite. Hence there is no
loss of generality in assuming that both coordinate Yi and Y j are infinite. Then the order of occurrences of a and b in both
coordinates must be the same, which has probability 0 to occur.

Finally, assume that condition 1b is not met, hence the presence of a cycle (r1, r2, . . . , rk) in the dependence relation. We
assume without loss of generality that r1, . . . , rk−1 are pairwise distinct. Let a1 ∈ �r1 ∩�r2 , a2 ∈ �r2 ∩�r3 , . . . , ak ∈ �r ∩�r1 .
k

S. Abbes / Information and Computation 255 (2017) 1–26 21
Focusing on the coordinates r1, . . . , rk of Y only, a pattern of the form (a1ak, a2a1, a3a2, . . . , ak−1ak−2, akak−1) shall occur
with probability 1. Since such a pattern is blocking the synchronization, it follows that the synchronization trace is finite
with probability 1.

We have proved so far the equivalence stated in point 1. We now come to the proof of point 2, and assume that |X | < ∞
with probability 1. The average of |X | is computed as the following mathematical expectation:

E|X | =
∑

x∈M
|x|P(X = x) = ε

∑
x∈M\{e}

|x| f (x),

where f is the sub-Möbius valuation associated with P, and ε is the constant given by the Möbius transform of f evaluated
at the empty heap (see Section 4.2.4). Let G(λ) be the power series:

G(λ) =
∑

x∈M
λ|x| f (x)

Then G(1) = ε−1 < ∞ according to Theorem 4.1 point 2, and since G has nonnegative coefficients, it implies by the Pring-
sheim Theorem that the radius of convergence of G is greater than 1. Hence so is its derivative, and thus G ′(1) < ∞. Since
E|X | = εG ′(1), the result of point 2 follows. �
6. The Probabilistic Full Synchronization Algorithm

The PSA produces random traces, either finite or infinite. Proposition 5.5 shows that the ability of the PSA to produce
finite or infinite traces does not depend on the probabilistic parameters one chooses to equip the local alphabets with. It
rather depends on the structure of the synchronization monoid.

To be sound, testing procedures and statistical averaging techniques require arbitrary large traces, which binds us to
the mathematical model of infinite traces. In case where the PSA fails to produce infinite traces, we are thus left with an
unsolved problem. Yet, we can produce finite traces. . . and the most natural thing to try from there, is to start the PSA over
and over, and to concatenate the finite random traces obtained at each execution of the PSA. The limiting trace is infinite
and random, couldn’t it just be the one we were looking for?

It is quite surprising to realize that this strategy fails in general. Of course the unlimited concatenation of finite traces,
with a positive average length, necessarily produces an infinite trace. But the failure comes from the distribution of this
random infinite trace. We will show on an example below that it is not a Bernoulli measure in general. In particular, the
uniform measure is thus unreachable by this technique.

Nevertheless, we introduce an algorithm based on recursive concatenation of finite random traces and that outputs,
if executed indefinitely, an infinite trace which is always distributed according to a Bernoulli measure. The intermediate,
finite random traces are obtained by a trial-and-reject procedure based on the PSA. The whole procedure constitutes the
Probabilistic Full Synchronization Algorithm (PFSA). In Section 6.4, we show that any Bernoulli measure can be simulated
by the output of the PFSA for the ring model.

6.1. Convolution of probability distributions and random walks

6.1.1. Convolution and random walks
We recall the general definition of convolution for a countable monoid M. Let ν and θ be two probability distributions

on M. Assume that X and Y are two independent random variables with values in M, distributed according to ν and to θ
respectively. Then the convolution ν ∗ θ [24] is the distribution of the random variable X · Y , and it is given by the Cauchy
product formula:

∀x ∈ M ν ∗ θ(x) =
∑

(y,z)∈M : y·z=x

ν(y) · θ(z).

The convolution product is associative.
Given a probability distribution ν over M, let (Xn)n≥1 be a sequence of independent random variables with values

in M, and identically distributed according to ν . The random walk associated with ν is the sequence of random variables
(Yn)n≥0 defined by Y0 = e, the unit element of the monoid, and inductively: Yn+1 = Yn · Xn+1 for all integers n. If νn denotes
the distribution of Yn , we have νn = ν∗(n) for all integers n, the nth convolution power of ν .

Each trajectory (Yn)n≥0 of the random walk is nondecreasing for the divisibility relation in the monoid. Hence, if we
assume now that M is a trace monoid, the nondecreasing sequence (Yn)n≥1 has a least upper bound in the completion M,
say Y∞ = ∨

n≥1 Yn . We introduce the notation ν∗∞ for the probability distribution of Y∞ , which we call the limit distribution
of the random walk (it is also called the harmonic measure of the random walk [24]).

22 S. Abbes / Information and Computation 255 (2017) 1–26
6.1.2. An example where the concatenation of PSA traces does not yield a limit multiplicative measure
We consider the ring synchronization monoid on four generators

M = 〈a0,a1,a2,a3 | a0a2 = a2a0, a1a3 = a3a1〉 ,

corresponding to the network of alphabets (�0, �1, �2, �3) with �0 = {a3, a0}, �1 = {a0, a1}, �2 = {a1, a2} and �3 =
{a2, a3}. Each alphabet �i , for i = 0, . . . , 3, is equipped with the uniform probability distribution. Let ν∗∞ be the distri-
bution on ∂M of the infinite trace obtained by concatenating infinitely many independent copies of a finite trace generated
by the PSA. Then we claim: the limit distribution ν∗∞ is not Bernoulli.

Seeking a contradiction, assume that it is. Clearly, ν∗∞ is concentrated on the boundary ∂M. And for symmetry reasons,
it is necessarily the uniform distribution, and thus given by ν∗∞(↑ x) = p|x|

0 where p0 is the root of smallest modulus of
the Möbius polynomial μ(z) = 1 − 4z + 2z2.

We extend the concatenation of traces x · y with (x, y) ∈ M × M to the case where y is an infinite trace by putting
x · y = ∨{x · yn : n ≥ 1} for y = ∨{yn : n ≥ 1}, and this definition does not depend on the choice of the sequence (yn)n≥1.
This yields also an extension of the notion of convolution ν ∗ θ to the case where ν is concentrated on M, but θ might be a
probability distribution on M. The construction of ν∗∞ implies the fix point property νp ∗ν∗∞ = ν∗∞ , where νp(⇑ x) = p|x|
is the distribution of the PSA, here given by p = 1/4. In particular for the cylinder ↑ a0, this yields:

p0 =
∑
k≥0

νp({ak
2})ν∗∞(↑ a0) + νp(⇑ a0) = p0(1 − 4p + 2p2)

1

1 − p
+ p

Simplifying by p �= 0, we obtain: p = (3p0 − 1)/(2p0 − 1), and since 1 − 4p0 + 2p2
0 = 0, it yields p = p0, a contradiction.

Actually, we have shown the strongest result that no random walk based on the distributions νp (⇑ x) = p|x| with p ∈ (0, p0)

has a Bernoulli measure as limit distribution ν∗∞
p .

6.2. First hitting times and pyramidal heaps

6.2.1. First hitting times
First hitting times for random heaps formalize the idea of the first time of occurrence of a given piece—yet, without an

explicit notion of time at hand. It generalizes to random heaps the analogous notion, for a Bernoulli sequence, of first time
of reaching a given letter.

Let M = M(�, I) be a trace monoid, and let a ∈ � be a given letter. The number of occurrences of a in the congruent
words defining a trace x is constant, and depends thus only on the trace x. We denote it by |x|a . For any infinite trace
ξ ∈ ∂M, let La(ξ) = {x ∈ M : x ≤ ξ ∧ |x|a > 0}. If nonempty, the set La(ξ) has a minimum which we denote by Va(ξ), and
it satisfies |Va(ξ)|a = 1. Intuitively, Va(ξ) represents the smallest sub-trace of ξ with at least an occurrence of a.

If ∂M is equipped with a Bernoulli measure P, then La(ξ) �= ∅ with probability 1. Hence, neglecting a set of zero
probability, we may assume that Va : ∂M → M is well defined. The mapping Va is called the first hitting time of a. The
distribution of the first hitting time of a is the probability distribution of the random variable Va . It is a discrete probability
distribution on M, which we denote by Pa , and which is defined by Pa(x) = P(Va = x) for all x ∈M.

We will base our random generation of infinite heaps on the following result.

Theorem 6.1. Let P be a Bernoulli measure equipping the boundary ∂M of an irreducible trace monoid M = M(�, I). Let a ∈ �,
and let Pa be the distribution of the first hitting time of a. Then P∗∞

a = P, where P∗∞
a is the limit distribution of the random walk on

M associated with Pa.

Sketch of proof. Let (V n)n≥0 be the sequence of iterated stopping times associated with the first hitting time Va , as defined
in [1, Def. 5.2]. Under the probability P, it follows from [1, Prop. 5.3] that, for each integer n, V n has the same distribution
as the nth step of the random walk associated with Pa . Since M is assumed to be irreducible, the sequence (V n)n≥0 is
exhaustive as defined in [1, Def. 5.5], from which the result derives. �

As a consequence, if we can simulate the distribution Pa of the first hitting time of some piece a, we will be able to
simulate a P-distributed infinite random heap. The improvement lies in the fact that first hitting times are finite heaps. Our
next task consists thus in studying more closely the distribution of the first hitting time, after which we shall see how to
simulate it.

6.2.2. Pyramidal heaps and the distribution of the first hitting time
Recall that any trace has an interpretation as a labeled partial order of pieces (see Section 3.2.2). A trace x is pyramidal

if, as labeled partially ordered set, it has a unique maximal element (a notion introduced by Viennot [23]). Any trace of the
form x = Va(ξ) for some ξ ∈ ∂M is pyramidal, with its unique occurrence of a as its unique maximal piece.

Then the set Va of traces x ∈M in the image of the mapping Va : ∂M →M can be described as follows: Va is the set of
pyramidal traces x ∈M such that the piece a only occurs as the unique maximal piece; see Fig. 7. Furthermore, we observe

S. Abbes / Information and Computation 255 (2017) 1–26 23
Fig. 7. (i): For M = 〈a, b, c, d : ac = ca, ad = da, bd = db〉: a trace x /∈ Va (it is not pyramidal) and its associated labeled poset. (ii): a trace y ∈ Va and its
associated labeled poset on the right.

that, if x ∈ Va , then {Va = x} =↑ x (an intuitive property, also proved in [1, Prop. 4.2]). It follows that the distribution Pa of
the first hitting time has the following simple expression:

∀x ∈ M Pa(x) =
{

0, if x /∈ Va

P(↑ x), if x ∈ Va
(28)

6.2.3. Generating pyramidal heaps
We consider a network of alphabets (�1, . . . , �N) with � = �1 ∪ · · · ∪ �N , such that the synchronization trace monoid

M = M(�, I) is irreducible. We pick an arbitrary letter a ∈ �. For each i ∈ {1, . . . , N}, let �′
i = �i \ {a} if a ∈ �i , and

�′
i = �i otherwise. Then the synchronization monoid M′ of (�′

1, . . . , �
′
N) coincides with the sub-monoid of M generated

by � \ {a}.
We assume, for each i ∈ {1, . . . , N}, to be given p′

i , either a probability distribution or a sub-probability distribution
over �′

i , such that the output X of the PSA executed on (�′
1, . . . , �

′
N) with those parameters, is finite with probability 1.

Given the parameters (p′
1, . . . , p

′
N), we consider the execution of the trial-and-reject procedure described in pseudo-code

in Algorithm 5 below. At each run of the loop, the algorithm needs to decide whether some trace V is pyramidal in M or
not. It is clear that a—far from being optimal—scanning procedure, examining all elements of V starting from the right, will
successfully complete this job.

Algorithm 5 Outputting a pyramidal trace in Va .
Require: –
1: X ← e � Initialization
2: repeat
3: call Algorithm 4 � Calling the PSA
4: X ← output of Algorithm 4
5: V ← X · a
6: until V is pyramidal in M � See comment
7: return V

By assumption, the PSA which is repeatedly called in Algorithm 5 always terminates and outputs a finite trace. The
probability of success is positive, since for instance X = e yields a success and has positive probability to be output by the
PSA; hence Algorithm 5 terminates with probability 1. The probability distribution of the output is given in the following
lemma, stated with the notations introduced above.

Lemma 6.2. Let f ′ : M′ → R∗+ be the sub-Möbius valuation associated with the output of the PSA running on M′ . Then the distri-
bution of the output V of Algorithm 5 is concentrated on Va and given by:

∀v ∈ Va P(V = v) = K · f ′(v/a), (29)

where v/a denotes the heap obtained by removing from v its unique maximal piece a, and K is a normalization constant.

Proof. Let Q denote the probability distribution of the output X of the PSA running on M′ with the specified parameters
(p′

1, . . . , p
′
N). Then f ′(x) = Q(⇑ x) for x ∈ M′ . According to Theorem 4.3, for some constant ε > 0, we have Q(X = x) =

ε f ′(x) for all x ∈M′ .
The rejection procedure amounts to considering the distribution of V = X · a conditioned on X · a ∈ Va . Hence the

probability for Algorithm 5 to issuing an element v ∈ Va is:

24 S. Abbes / Information and Computation 255 (2017) 1–26
P(V = v) = Q(X · a = v)

Q(X · a ∈ Va)
= Q(X = v/a)

Q(X · a ∈ Va)
= K · f ′(v/a),

where K is the constant K = ε/Q(X · a ∈ Va). �
Note that the form (29) is almost that of a valuation evaluated at v . The contribution of the last piece a is missing,

but the constant K is adequately placed to play the role of this missing contribution. This will be used in the proof of
Theorem 6.3.

6.3. The Probabilistic Full Synchronization Algorithm

We are now ready for constructing a probabilistic algorithm generating Bernoulli-distributed infinite traces. The frame-
work consists of a network (�1, . . . , �N) of alphabets, such that the synchronization trace monoid M = M(�, I) is
irreducible, with � = �1 ∪ · · · ∪ �N .

6.3.1. Description of the algorithm
Having chosen an arbitrary piece a ∈ �, we consider a family (p′

1, . . . , p′
N) of probabilistic parameters as above, i.e., with

the constraint that the PSA executed on the sub-monoid M′ generated by � \ {a} and with these parameters, outputs a
finite trace with probability 1.

The Probabilistic Full Synchronization Algorithm (PFSA) is described in pseudo-code in Algorithm 6 below. The PFSA is
an endless loop, incrementally writing to its output register X . It simulates thus the random walk on M with increments
distributed according to the distribution established in Lemma 6.2.

Algorithm 6 Probabilistic Full Synchronization Algorithm.
Require: –
1: X ← e � Initialization
2: repeat
3: call Algorithm 5
4: V ← output of Algorithm 5 � Random pyramidal trace V ∈ Va

5: X ← X · V � Increments the random walk
6: until false

The analysis of Algorithm 6 is twofold: a probabilistic analysis carried on in Section 6.3.2 and a complexity analysis
carried on in Section 6.3.3.

6.3.2. Probabilistic analysis of the PFSA
Recall that, by convention, the output of the PFSA is the random infinite heap, least upper bound in ∂M of the finite

heaps recursively written in its output register. The probability distribution of this infinite heap is as follows.

Theorem 6.3. We consider the execution of the PFSA in the framework described in Section 6.3.1, and we adopt the same notations.
Let f ′ : M′ → R∗+ be the sub-Möbius valuation associated with the PSA executed with the chosen parameters (p′

1, . . . , p
′
N), and let

X∞ be the output (with the convention recalled above) of the PFSA.
Then X∞ is distributed according to a Bernoulli measure on ∂M. The associated valuation f :M →R is the Möbius valuation on

M that extends f ′ :M′ → R (the existence and uniqueness of which are stated in Theorem 4.5).

Proof. Let f : M → R∗+ be as in the statement. Let P be the Bernoulli measure on ∂M defined by P(↑ x) = f (x), which is
well defined according to Theorem 4.3.

Letting Q be the distribution of X∞ , we have to prove that P = Q. Let g : Va → R∗+ be the probability distribution of
the increment V in the PFSA. Since Q is the limit distribution of the random walk on M with increments distributed
identically to V , it follows from Theorem 6.1 that we only need to show that g(x) = P(Va = x) for all x ∈ Va .

According to (28), we have:

∀x ∈ Va P(Va = x) = P(↑ x) = f (x). (30)

Whereas, according to Lemma 6.2, we have for some constant K :

∀x ∈ Va g(x) = K f ′(x/a) = K

f (a)
f (x), (31)

where the latter equality comes from the identity f (x) = f (x/a) f (a) = f ′(x/a) f (a), since x/a ∈M′ and f ′ is the restriction
of f to M′ .

Summing up over Va in (30) yields
∑

x∈Va
f (x) = 1, whereas summing up over Va in (31) yields 1 = (

K/ f (a)
) ·(∑

x∈Va
f (x)

) = K/ f (a). Therefore K = f (a), which yields after re-injecting in (31): g(x) = f (x) and thus g(x) = P(Va = x)
for all x ∈ Va . Since P has the desired properties, the proof is complete. �

S. Abbes / Information and Computation 255 (2017) 1–26 25
Fig. 8. (i): synchronization monoid for the ring model with five generators. (ii): generators of the path model on which the PSA is run at each loop of the
PFSA.

6.3.3. Complexity analysis of the PFSA
We will limit our analysis to the following observation: the size of the output register of the PFSA grows linearly with time in

average.
Indeed, each PSA call in Algorithm 5 takes a finite amount of time in average according to Proposition 5.5, point 2. Since

the probability of success in the trial-and-reject procedure of Algorithm 5 is positive, it will thus execute in average in a
fixed amount of time. This implies that the output register of the PFSA grows linearly in average.

Another question is to compute adequately the probabilistic parameters. We will discuss it briefly in Section 7, after
having examined some examples.

6.4. Example: ring models

6.4.1. A general result
For the ring models, the following result shows that any Bernoulli measure can be simulated by executions of the PFSA.

Theorem 6.4. Let (a0, . . . , aN−1) be N distinct symbols, and let (�0, . . . , �N−1) be the network of alphabets defined by:

0 < i ≤ N − 1 �i = {ai−1,ai} , �0 = {aN−1,a0} .

The synchronization monoid M =M(�, I) is described as follows:

� = {a0, . . . ,aN−1} , I = {(ai,a j) : (i − j mod N ≥ 2) ∧ (j − i mod N ≥ 2)} .

Then any Bernoulli measure on ∂M can be simulated by the endless execution of the PFSA, and in particular the uniform measure
on ∂M.

Proof. Let P be a target Bernoulli measure on ∂M, and let f :M →R∗+ be the associated Möbius valuation. We pick a0 as
the piece to be removed. Let M′ be the submonoid of M generated by a1, . . . , aN . Then M′ is a path model. Furthermore,
since M is irreducible, it follows from Theorem 4.5 point 1 that the restriction of f to M′ is sub-Möbius. According to
Theorem 5.4, the associated probability distribution can be obtained by running the PSA with suitable parameters. Running
the PFSA based on this instance of the PSA, we generate a Bernoulli measure which Möbius valuation, say g , extends to M
the restriction of f to M′ . By the uniqueness of the extension of sub-Möbius valuations to Möbius valuations (Theorem 4.5
point 2), it follows that g = f . �
6.4.2. Example

We consider the example of the ring model M on five generators, the synchronization graph of which is depicted in
Fig. 8, (i). We aim at generating the uniform measure on ∂M, say ν , characterized by ν(↑ x) = p|x|

0 , where p0 = 1
2 −

√
5

10 is
the root of smallest modulus of μM(t) = 1 − 5t + 5t2.

We pick a0 as our distinguished piece, as depicted in Fig. 8, (ii). Then, we wish to run on the sub-monoid

M′ = 〈a1,a2,a3,a4 | a1a3 = a3a1, a1a4 = a4a1, a2a4 = a4a2〉
a PSA with associated valuation f ′ :M′ → R such that f ′(x) = p|x|

0 for all x ∈M′ . Note that p0 is not the root of μM′ !
Referring to the computations performed in the proof of Theorem 5.4, adequate solutions for p2, p3 and p4, respectively

on {a1, a2}, on {a2, a3} and on {a3, a4}, are obtained as follows:

p2(a1) = p0 = 1

2
−

√
5

10
≈ 0.276 p2(a2) = 1 − p0 = 1

2
+

√
5

10
≈ 0.724

p3(a2) = p0

1 − p0
= 3

2
−

√
5

2
≈ 0.382 p3(a3) = 1 − 2p0

1 − p0
= −1

2
+

√
5

2
≈ 0.618

p4(a3) = p0(1 − p0)

1 − 2p0
= 1√

5
≈ 0.447 p4(a4) = p0 = 1

2
−

√
5

10
≈ 0.276

26 S. Abbes / Information and Computation 255 (2017) 1–26
7. Computational issues and perspectives

When trying to use the PFSA in practice for simulation and testing, one might be concerned by the fact that it incremen-
tally outputs heaps with a particular shape, namely they are all pyramidal. Furthermore, the tip of these pyramidal heaps
is always labeled with the same letter, corresponding to an arbitrary choice made before executing the algorithm. Actually,
there are good reasons not to worry about that. Indeed, a large class of statistics on heaps can safely be computed on these
particular heaps, and they will asymptotically be indistinguishable from statistics computed on arbitrary large heaps. For
instance, an asymptotics of the speedup, i.e. the ratio height over number of pieces in large heaps, can be estimated in this
way. Precise results on this topic are found in [1], under the name of cut-invariance.

Another concern is the following. Even if the PFSA were proved to be able to simulate any Bernoulli measure for any
topology, not only for the ring topology, there is no doubt that its execution would still need the precomputation of adequate
probabilistic parameters, and in particular the root of smallest modulus of the Möbius polynomial of the synchronization
monoid. Given that the determination of this polynomial on a general synchronization graph is an NP-complete problem
(since the independence set decision problem is NP-complete [8]), this precomputation method appears unrealistic to be
used in practice.

However, what is needed is not the Möbius polynomial itself, but only its root of smallest modulus. Perhaps, this root
can be approximated in polynomial time without computing explicitly the Möbius polynomial, but this question sill needs
investigations.

Acknowledgments

A number of ideas in this paper have emerged through animated discussions with É. Fabre, B. Genest and N. Bertrand
at INRIA Rennes during Spring 2015. I am grateful to A. Muscholl for pointing out the reference [7]; and I am grateful to
C. Male for pointing out the reference [15]. I am grateful to the anonymous reviewers who greatly helped me improving the
paper.

References

[1] S. Abbes, A cut-invariant law of large numbers for random heaps, J. Theor. Probab. (2016) 1–34.
[2] S. Abbes, J. Mairesse, Uniform and Bernoulli measures on the boundary of trace monoids, J. Comb. Theory, Ser. A 135 (2015) 201–236.
[3] S. Abbes, J. Mairesse, Uniform generation in trace monoids, in: G. Italiano, G. Pighizzini, D. Sannella (Eds.), Math. Found. Comput. Sc. 2015 (MFCS 2015),

part 1, in: Lecture Notes in Comput. Sci., vol. 9234, Springer, 2015, pp. 63–75.
[4] O. Bernardi, O. Giménez, A linear algorithm for the random sampling from regular languages, Algorithmica 62 (1–2) (2012) 130–145.
[5] P. Billingsley, Probability and Measure, 3rd edition, Wiley, 1995.
[6] P. Cartier, D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes Math., vol. 85, Springer, 1969.
[7] R. Cori, D. Perrin, Automates et commutations partielles, RAIRO Theor. Inform. Appl. 19 (1) (1985) 21–32.
[8] S. Dasgupta, C. Papadimitriou, U. Vazirani, Algorithms, McGraw-Hill, 2006.
[9] A. Denise, M.-C. Gaudel, S.-D. Gouraud, R. Lassaigne, S. Peyronnet, Uniform random sampling of traces in very large models, in: Proc. First Internat.

Workshop on Random Testing (RT’06), ACM Press, 2006, pp. 10–19.
[10] V. Diekert, Combinatorics on Traces, Lecture Notes Comput. Sci., vol. 454, Springer, 1990.
[11] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, 1995.
[12] P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer, Boltzmann samplers for the random generation of combinatorial structures, Comb. Probab. Comput. 13

(2004) 577–625.
[13] B. Genest, H. Gimber, A. Muscholl, I. Walukiewicz, Asynchronous games over tree architectures, in: Proc. 40th Internat. Colloquium on Automata,

Languages and Programming (ICALP 2013), in: Lecture Notes Comput. Sci., vol. 7966, Springer, 2013, pp. 275–286.
[14] M. Goldwurm, M. Santini, Clique polynomials have a unique root of smallest modulus, Inf. Process. Lett. 75 (3) (2000) 127–132.
[15] K. Khanin, S. Nechaev, G. Oshanin, A. Sobolevski, O. Vasilyev, Ballistic deposition patterns beneath a growing Kardar–Parisi–Zhang interface, Phys. Rev.

E 82 (2010).
[16] D. Krob, J. Mairesse, I. Michos, Computing the average parallelism in trace monoids, Discrete Math. 273 (2003) 131–162.
[17] A. Mazurkiewicz, Trace theory, in: Petri Nets: Applications and Relationships to Other Models of Concurrency, in: Lecture Notes Comput. Sci., vol. 255,

Springer, 1987, pp. 278–324.
[18] J. Oudinet, Uniform random walks in very large models, in: Proc. Second Internat. Workshop on Random Testing (RT’07), ACM Press, 2007, pp. 26–29.
[19] W. Reisig, G. Rozenberg (Eds.), Lectures on Petri Nets I: Basic Models, Lecture Notes Comput. Sci., vol. 1491, Springer, 1998.
[20] K. Sen, Effective random testing of concurrent programs, in: Proc. Twenty-second IEEE/ACM Internat. Conference on Automated Software Engineering

(ASE’07), ACM Press, 2007, pp. 323–332.
[21] E. Seneta, Non-Negative Matrices and Markov Chains, revised printing, Springer, 1981.
[22] X. Viennot, Problèmes combinatoires posés par la physique statistique, in: Séminaire N. Bourbaki, 1983–1984, Astérisque (1985) 225–246, Soc. Math.

France.
[23] X. Viennot, Heaps of pieces, I: basic definitions and combinatorial lemmas, in: Combinatoire énumérative, in: Lecture Notes Math., vol. 1234, Springer,

1986, pp. 321–350.
[24] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge University Press, 2000.

http://refhub.elsevier.com/S0890-5401(17)30049-4/bib61626265733135s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib61626265735F6D6169723135s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib616262657331355F756E6966s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib616262657331355F756E6966s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib6265726E617264693132s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib62696C6C696E67736C65793935s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib636172746965723639s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib636F72693835s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib646173677570746130363A5F616C676F72s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib64656E69736530363A5F756E69666F72s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib64656E69736530363A5F756E69666F72s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib6469656B6572743930s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib6469656B6572743935s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib647563686F6E3034s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib647563686F6E3034s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib67656E65737431333A5F6173796E63s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib67656E65737431333A5F6173796E63s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib676F6C647775726D30303A5F636C69717565s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib6B68616E696E3130s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib6B68616E696E3130s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib6B726F623033s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib6D617A75726B69657769637A38373A5F7472616365s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib6D617A75726B69657769637A38373A5F7472616365s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib6F7564696E657430373A5F756E69666F72s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib72656973696739383A5F70657472695F69s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib73656E30373A5F6566666563s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib73656E30373A5F6566666563s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib73656E6574613831s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib7669656E6E6F743835s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib7669656E6E6F743835s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib7669656E6E6F743836s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib7669656E6E6F743836s1
http://refhub.elsevier.com/S0890-5401(17)30049-4/bib776F6573733030s1

	Synchronization of Bernoulli sequences on shared letters
	1 Introduction
	2 Illustrating the PSA and PFSA algorithms
	2.1 Illustrating the Probabilistic Synchronization Algorithm (1)
	2.2 Illustrating the Probabilistic Synchronization Algorithm (2)
	2.3 Illustrating the Probabilistic Full Synchronization Algorithm

	3 Preliminaries on trace monoids
	3.1 Combinatorics of trace monoids
	3.1.1 Deﬁnitions
	3.1.2 Cliques
	3.1.3 Growth series and Möbius polynomial
	3.1.4 Multivariate Möbius polynomial
	3.1.5 Irreducibility

	3.2 The heap of pieces interpretation of traces
	3.2.1 The picture
	3.2.2 Traces as labeled ordered sets

	3.3 Completing trace monoids with inﬁnite traces
	3.3.1 Inﬁnite traces
	3.3.2 Properties of (M,<=)

	3.4 Synchronization of sequences
	3.4.1 Network of alphabets and synchronizing trace monoid
	3.4.2 Synchronization of sequences
	3.4.3 On-line computation features
	3.4.4 Detecting deadlocks
	3.4.5 Computation of the synchronization trace
	3.4.6 Feeding the Synchronization Algorithm with a possibly inﬁnite input

	4 Preliminaries on probabilistic trace monoids
	4.1 Bernoulli and ﬁnite Bernoulli sequences
	4.1.1 Bernoulli sequences
	4.1.2 Bernoulli measures
	4.1.3 Uniform Bernoulli measure
	4.1.4 Finite Bernoulli sequences
	4.1.5 Full elementary cylinders

	4.2 Bernoulli and sub-Bernoulli measures on trace monoids
	4.2.1 Valuations
	4.2.2 Möbius transform; Möbius and sub-Möbius valuations
	4.2.3 Cylinders and σ-algebras on M and on ∂M
	4.2.4 Multiplicative probability measures
	4.2.5 Uniform multiplicative measures
	4.2.6 Extension and restriction of valuations

	5 The Probabilistic Synchronization Algorithm
	5.1 Description of the PSA
	5.2 Analysis of the algorithm
	5.2.1 Distribution of PSA random traces
	5.2.2 Small values
	5.2.3 Reduction to irreducible trace monoids

	5.3 Example: the path model
	5.4 Finitary cases
	5.4.1 Example of a ring model
	5.4.2 Generalization: trees and cycles

	6 The Probabilistic Full Synchronization Algorithm
	6.1 Convolution of probability distributions and random walks
	6.1.1 Convolution and random walks
	6.1.2 An example where the concatenation of PSA traces does not yield a limit multiplicative measure

	6.2 First hitting times and pyramidal heaps
	6.2.1 First hitting times
	6.2.2 Pyramidal heaps and the distribution of the ﬁrst hitting time
	6.2.3 Generating pyramidal heaps

	6.3 The Probabilistic Full Synchronization Algorithm
	6.3.1 Description of the algorithm
	6.3.2 Probabilistic analysis of the PFSA
	6.3.3 Complexity analysis of the PFSA

	6.4 Example: ring models
	6.4.1 A general result
	6.4.2 Example

	7 Computational issues and perspectives
	Acknowledgments
	References

