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Abstract We consider the framework of Bernoulli measures for heap monoids. We
introduce in this framework the notion of asynchronous stopping time, which gen-
eralizes the notion of stopping time for classical probabilistic processes. A strong
Bernoulli property is proved. A notion of cut-invariance is formulated for convergent
ergodic means. Then, a version of the strong law of large numbers is proved for heap
monoids with Bernoulli measures. We study a sub-additive version of the law of large
numbers in this framework.
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1 Introduction

1.1 Heap Monoids

Dimermodels arewidely usedmodels, in Statistical Physics as a growthmodel [13,22],
and in Combinatorics where they occurred for their application to the enumeration of
directed animals for instance [4]. Dimer models belong to the larger class of heap
monoidsmodels, studied, among others, by Cartier and Foata [5] and by Viennot [23].
Heap monoids have also been used for the analysis of distributed databases [9] and
more generally as a model of concurrent systems [15,24].
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The simplest way to define heapmonoids is to consider their algebraic presentation,
which is of the following form:

M = 〈� | ab = ba for (a, b) ∈ I,

where � is a finite and non-empty set, the elements of which are called pieces, and
I is an irreflexive and symmetric relation on �. Elements of M are called heaps. A
heap is thus an equivalence class of �-words, with respect to the congruence which
relates two words that can be reached from one another by finitely many elementary
transformations of the following form:

a1 . . . ak ab ak+1 . . . ak+ j −→ a1 . . . ak ba ak+1 . . . ak+ j , for k, j ≥ 0 and (a, b) ∈ I.

The combinatorial interpretation of this algebraic presentation is discussed later.

1.2 Probabilistic Models and Bernoulli Measures

On the probabilistic side, at least two probabilistic frameworks for heap monoids can
be considered. A first natural framework is that of a random walk: pick a piece at
random, and add it by right multiplication in the monoid to the previously constructed
heap. Random walks have a direct relation with the uniform distribution on words: for
the uniform random walk for instance, at time n, the distribution of the random heap
of size n thus constructed is the law of the equivalence class [x], where x is a random
word uniformly distributed among words of size n. Limit theorems for this framework
are particular instances of classical results.

Another natural framework is the following. Let n ≥ 0 be an integer, and let Mn

be the set of heaps in M of size n—that is to say, those heaps containing exactly n
pieces. SinceMn is finite, it is natural to consider the uniformdistributionmn onMn . It
turns out that, for n going to∞, the sequence of finite distributions (mn)n≥0 converges
weakly toward a probability measure on the space of infinite heaps. This probability
measure, called the uniform measure, is a particular instance of a Bernoulli measure
for heap monoids, introduced in a previous work [2]. It is the aim of this paper to study
a law of large numbers for these measures.

1.3 Cut-Invariant Law of Large Numbers

For limit theorems for Bernoulli measures, two approaches can be considered. For the
uniform measure for instance, which is the weak limit of finite uniform distributions,
it is natural to evaluate ergodic sums along finite heaps of size n and to form ergodic
means by dividing by n and then to study the limit of these when n goes to infinity.
This approach is the topic of a paper in preparation [1].

This approach, however, does not answer the following type of questions. Assume
that P is a Bernoulli measure on the space of infinite heaps, and let a be some fixed
piece. Let ξ be a random infinite heap distributed according to P. With probability 1,
the heap ξ contains infinitely many occurrences of the piece a. To each of these
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occurrences, corresponds a sub-heap of ξ , namely the smallest sub-heap of ξ that
contains it. Ergodic sums can thus be formed along these finite sub-heaps; dividing
the ergodic sums by their size yields ergodic means, for which the limit is of interest.
Furthermore, one might expect that the limit is independent of the chosen piece a. This
is the main result proved in this paper, justifying the name of cut-invariant for the law
of large numbers that we obtain.

1.4 Contributions

The previous discussion illustrates a procedure for recursively cutting sub-heaps out
of an infinite heap. We introduce the notion of asynchronous stopping time (AST ), of
which the previous example is a particular instance. The notion of AST generalizes
that of stopping time for classical probabilistic processes. For instance, we recognize
in the former example the counterpart of the first hitting time of a state.

To each AST is associated a shift operator on the space of infinite heaps, which we
prove to be ergodic under mild conditions on the AST . AST and the associated shift
operators are the basic elements for stating a strong Bernoulli property, analogous to
the strong Markov property in our framework.

AST allow to define ergodic sums and ergodic means. The cut-invariant law of
large numbers states the convergence of these ergodic means on the one hand, and
that this limit is independent of the AST that has been considered on the other hand. It
is proved for additive cost functions and under additional conditions for sub-additive
cost functions as well. In both cases, the main point is to prove that the limit of the
ergodic means is independent of the chosen AST .

1.5 Organization of the Paper

We have included a preliminary section which illustrates most of the notions on a
very simple example, allowing to do all the calculations by hand. In particular, the
cut-invariance is demonstrated by performing simple computations using only geo-
metric laws. Later in the paper, all the specific computations for this example will
be reinterpreted under the light of Bernoulli measures on heap monoids. Introducing
more theoretical material is mandatory, since the basic analysis performed in Sect. 2
relies on an easy description of all possible heaps for this example—an intractable
task in general.

The paper is organized as follows. Section 2 is the preliminary example section,
which relies on no theoretical material at all. Section 3 introduces the background on
heap monoids and Bernoulli measures. Section 4 introduces asynchronous stopping
times for heapmonoids. Section 5 studies the iteration of asynchronous stopping times.
Section 6 states and proves the cut-invariant law of large numbers. Section 7 is devoted
to the sub-additive variant of the law of large numbers.

2 Cut-Invariance on an Example

The purpose of this preliminary section is twofold. First, it will help motivating the
model of Bernoulli measures on heap monoids, which will appear as a natural prob-
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abilistic model for systems involving asynchronous actions. Second, it will illustrate
that asymptotic quantities relative to themodelmay be computed according to different
presentations, corresponding to different cut shapes of random heaps.

Consider two communicating devices A and B. Device Amayperform some actions
on its own, called actions of type a. Similarly, device B may perform actions of type
b on its own. Finally, both devices may perform together a synchronizing action of
type c, involving communication on both sides—a sort of check-hand action.

Consider the following simple probabilistic protocol, involving two fixed proba-
bilistic parameters λ, λ′ ∈ (0, 1).

1. Device A and device B perform actions of type a and b, respectively, in an asyn-
chronous and probabilistically independent way. The number Na of occurrences
of type a actions and the number Nb of occurrences of type b actions follow
geometric laws with parameters λ and λ′, respectively. Hence:

∀k, k′ ≥ 0 P(Na = k, Nb = k′) = λ(1 − λ)k · λ′(1 − λ′)k′
. (1)

2 Devices A and B perform a synchronizing action of type c, acknowledging that
they have completed their local actions.

3. Go to 1.

We say that Steps 1–2 form a round of the protocol. The successive geometric
variables that will occur when executing several rounds of the protocol are assumed
to be independent.

The question that will guide us throughout this study is the following: what are
the asymptotic densities of actions of type a, b, and c? Hence, we are looking for
non-negative quantities γa, γb, γc such that γa + γb + γc = 1, and that represent the
average ratio of each type of action among all three possible types.

Before we suggest possible definitions for the asymptotic density vector, it is cus-
tomary to interpret the executions of the above protocol with a heap of pieces model.
For this, associate dominoes to each type of action a, b and c. The occurrence of an
action corresponds to a domino of the associated type falling from top to bottom until
it reaches either the ground or a previously piled domino. Asynchrony of types a and
b actions is rendered by letting dominoes of type a and b falling according to parallel,
separated lanes, whereas dominoes of type c are blocking for dominoes of types a
and b, which renders the synchronization role of type c actions. A typical first round
of the protocol, in the heap model, corresponds to a heap as depicted in Fig. 1a for
Na = 1 and Nb = 2. The execution of several rounds of the protocol makes the heap
growing up, as depicted in Fig. 1b.

Letting the protocol execute without limit of time yields random infinite heaps. Let
P denotes the probability measure that equips the canonical space associated with the
execution of infinitely many rounds of the protocol. The measure P can also be seen
as the law of the infinite heap resulting from the execution of the protocol.

It is interesting to observe that the law P cannot be reached by the execution of
any Markov chain with three states a, b, c (proof left to the reader). In particular, the
estimation of the asymptotic quantities that we perform below do not result from a
straightforward translation into aMarkov chainmodel. However, wewill see that there
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Fig. 1 Heaps of pieces corresponding to the execution of: (a) the first round of the protocol, (b) the three
first rounds of the protocol

is a natural interpretation of P as the law of trajectories of a finite Markov chain with
four states, see Sect. 3.8.

If N denotes the total number of pieces at Round 1 of the protocol, one has N =
Na + Nb + Nc with Nc = 1. Each round of the protocol corresponding to a fresh pair
(Na, Nb), it is natural to define the asymptotic density vector γ as:

γa = ENa

EN
, γb = ENb

EN
, γc = ENc

EN
= 1

EN
, (2)

where E denotes the expectation with respect to probability P.
Since Na and Nb follow geometric laws on the one hand, and since EN = 1 +

ENa + ENb on the other hand, the computation of γ = (
γa γb γc

)
is immediate and

yields:

γa = λ′(1 − λ)

λ + λ′ − λλ′ , γb = λ(1 − λ′)
λ + λ′ − λλ′ , γc = λλ′

λ + λ′ − λλ′ . (3)

The description we have given of the protocol has naturally lead us to the Defi-
nition (2) for the density vector γ . However, abstracting from the description of the
protocol and focusing on the heapmodel only, we realize that an equivalent description
of the probabilistic protocol is the following:

3. Consider the probability distribution P over random heaps.
4. Recursively cut an infinite random heap, say ξ distributed according to P, by

selecting the successive occurrences of type c dominoes in ξ , and cutting apart the
associated sub-heaps, as in Fig. 1b.

In this new formulation, point 3 is now intrinsic, while only point 4 relies on a
special cut shape. Henceforth, the following questions are natural: if we change the
cut shape in point 4, and if we compute the new associated densities of pieces, say
γ ′ = (

γ ′
a γ ′

b γ ′
c

)
, is it true that γ = γ ′?

Let us consider for instance the variant where heaps are cut at “first occurrence”
of type a dominoes. We illustrate in Fig. 2 the successive new rounds, corresponding
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Fig. 2 Cutting heaps relatively to type a dominoes

to the same heap that we already depicted in Fig. 1. Observe that each new round
involves a finite but unbounded number of rounds of the original protocol.

Let V ′ denotes the random heap obtained by cutting an infinite heap at the first
occurrence of a domino of type a, which is defined with P-probability 1. Denote by
|V ′| the number of pieces in V ′. Denote also by |V ′|a the number of occurrences of
piece a in V ′, and so on for |V ′|b and for |V ′|c, so that |V ′| = |V ′|a + |V ′|b + |V ′|c
holds. By construction, |V ′|a = 1 holds P-almost surely. We define the new density
vector γ ′ = (

γ ′
a γ ′

b γ ′
c

)
by:

γ ′
a = E|V ′|a

E|V ′| = 1

E|V ′| , γ ′
b = E|V ′|b

E|V ′| , γ ′
c = E|V ′|c

E|V ′| .

The computation of γ ′ is easy. A typical random heap V ′ ends up with a, after
having crossed, say, k occurrences of c. Immediately before the j th occurrence of c,
for j ≤ k, there has been an arbitrary number, say l j , of occurrences of b. Hence,
V ′ = bl1 · c · · · · · blk · c · a, with k ≥ 0 and l1, . . . , lk ≥ 0. Referring to the definition
of the probability P, one has:

∀k, l1, . . . , lk ≥ 0, P(V ′ = bl1 · c · · · · · blk · c · a) = λk(1 − λ)λ′k(1 − λ′)l1+···+lk .

Since |V ′|b = l1 + · · · + lk and |V ′|c = k, the computation of the various expecta-
tions is straightforward:

E|V ′|b =
∑

k,l1,...,lk≥0

(l1 + · · · + lk)λ
k(1 − λ)λ′k(1 − λ′)l1+···+lk = λ(1 − λ′)

λ′(1 − λ)

E|V ′|c =
∑

k,l1,...,lk≥0

kλk(1 − λ)λ′k(1 − λ′)l1+···+lk = λ

1 − λ
.

E|V ′| = 1 + E|V ′|b + E|V ′|c = λ + λ′ − λλ′

λ′(1 − λ)
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We obtain the density vector γ ′:

γ ′
a = λ′(1 − λ)

λ + λ′ − λλ′ , γ ′
b = λ(1 − λ′)

λ + λ′ − λλ′ , γ ′
c = λλ′

λ + λ′ − λλ′ .

Comparing with (3), we observe the announced equality γ = γ ′.

3 Heap Monoids and Bernoulli Measures

In this section, we collect the needed material on heap monoids and on associated
Bernoulli measures. Classical references on heapmonoids are [5,9,10,23]. For infinite
heaps and Bernoulli measures, see [2].

3.1 Independence Pairs and Heap Monoids

Let � be a finite, non-empty set of cardinal > 1. Elements of � are called pieces. We
say that the pair (�, I ) is an independence pair if I is a symmetric and irreflexive
relation on �, called independence relation. We will furthermore always assume that
the following irreducibility assumption is in force: the associated dependence relation
D on �, defined by D = (� × �)\I , makes the graph (�, D) connected.

The free monoid generated by � is denoted by �∗, it consists of all �-words. The
congruence I is defined as the smallest congruence on�∗ that contains all pairs of the
form (ab, ba) for (a, b) ranging over I . The heap monoid M = M(�, I ) is defined
as the quotient monoid M = �∗/I. Hence, M is the presented monoid:

M = 〈� | ab = ba, for (a, b) ∈ I 〉.

Elements of a heap monoid are called heaps. In the literature, heaps are also called
traces; heap monoids are also called free partially commutative monoids.

We denote by the dot “·” the concatenation of heaps, and by 0 the empty heap.
A graphical interpretation of heaps is obtained by letting pieces fall as dominoes

on a ground, in such a way that (1) dominoes corresponding to different occurrences
of the same piece follow the same lane; and (2)two dominoes corresponding to pieces
a and b are blocking with respect to each other if and only if (a, b) /∈ I . This is
illustrated in Fig. 3 for the heap monoid on three generators T = 〈a, b, c | ab = ba〉.
This will be our running example throughout the paper.

3.2 Length and Ordering

The congruence I coincides with the reflexive and transitive closure of the immediate
equivalence, which relates any two �-words of the form xaby and xbay, where
x, y ∈ �∗ and (a, b) ∈ I . In particular, the length of congruent words is invariant,
which defines a mapping | · | : M → N. For any heap x ∈ M, the integer |x | is
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Fig. 3 Two congruent words and the resulting heap

called the length of x . Obviously, the length is additive on M: |x · y| = |x | + |y| for
all heaps x, y ∈ M.

The left divisibility relation “≤” is defined on M by:

∀x, y ∈ M x ≤ y ⇐⇒ ∃z ∈ M y = x · z. (4)

It defines a partial ordering relation onM. If x ≤ y, we say that x is a sub-heap of y.
Visually, x ≤ y means that x is a heap that can be seen at the bottom of y. But,

contrary to words, a given heap might for instance have several sub-heaps of length 1.
Indeed, in the example monoid T defined above, one has both a ≤ a · b and b ≤ a · b
since a · b = b · a in T .

Heap monoids are known to be cancellative, meaning:

∀x, y, u, u′ ∈ M x · u · y = x · u′ · y �⇒ u = u′.

This implies in particular that, if x, y are heaps such that x ≤ y holds, then the heap
z in (4) is unique. We denote it by: z = y − x .

3.3 Cliques and Cartier-Foata Normal Form

Recall that a clique of a graph is a subgraph which is complete as a graph—this
includes the empty graph. The independence pair (�, I ) may be seen as a graph. The
cliques of (�, I ) are called the independence cliques, or simply the cliques of the heap
monoid M.

Each clique γ , with set of vertices {a1, . . . , an}, identifies with the heap a1 ·· · ··an ∈
M, which, by commutativity, is independent of the sequence (a1, . . . , an) enumer-
ating the vertices of γ . In the graphical representation of heaps, cliques correspond
to horizontal layers of pieces. Note that any piece is by itself a clique of length 1.
We denote by C the set of cliques of the heap monoid M, and by C = C \{0} the
set of non-empty cliques. For the running example monoid T , there are 4 non-empty
cliques: C = {a, b, c, a · b}.

It is visually intuitive that heaps can be uniquelywritten as a succession of horizontal
layers, hence of cliques. More precisely, define the relation → on C as follows:

∀γ, γ ′ ∈ C γ → γ ′ ⇐⇒ ∀b ∈ γ ′ ∃a ∈ γ (a, b) /∈ I.
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The relation γ → γ ′ means that γ “supports” γ ′, in the sense that no piece of γ ′
can fall when piled upon γ .

A sequence γ1, . . . , γn of cliques is said to be Cartier–Foata admissible if γi →
γi+1 holds for all i ∈ {1, . . . , n − 1}. For every non-empty heap x ∈ M, there exists
a unique integer n ≥ 1 and a unique Cartier–Foata admissible sequence (γ1, . . . , γn)

of non-empty cliques such that x = γ1 · · · · · γn .
This unique sequence of cliques is called theCartier–Foata normal form or decom-

positionof x (CF for short). The integern is called theheight of x , denoted byn = τ(x).
By convention, we set τ(0) = 0.

Heaps are thus in one-to-one correspondence with finite paths in the graph (C,→)

of non-empty cliques. By convention, let us extend any such finite path by infinitely
many occurrences of the empty clique 0. Observe that 0 is an absorbing vertex of
the graph of cliques (C ,→), since 0 → γ ⇐⇒ γ = 0, and γ → 0 holds for
every γ ∈ C . With this convention, heaps are now in one-to-one correspondence with
infinite paths in (C ,→) that reach the 0 node—and then stay in it.

3.4 Infinite Heaps and Boundary

We define an infinite heap as any infinite admissible sequence of cliques in the graph
(C ,→), that does not reach the empty clique. The set of infinite heaps is called
the boundary at infinity of M, or simply the boundary of M, and we denote it
by ∂M [2]. By contrast, elements of M might be called finite heaps. Extending the
previous terminology, we still refer to the cliques γn such that ξ = (γn)n≥1 as to the
CF decomposition of an infinite heap ξ .

It is customary to introduce the following notation:

M = M ∪ ∂M.

Elements ofM are thus in one-to-one correspondencewith infinite paths in (C ,→);
those that reach 0 correspond to heaps, and those that do not reach 0 correspond to
infinite heaps. For ξ ∈ ∂M, we put |ξ | = ∞.

We wish to extend toM the order ≤ previously defined onM. For this, we use the
representation of heaps, either finite or infinite, as infinite paths in the graph (C ,→),
and we put, for ξ = (γ1, γ2, . . .) and ξ ′ = (γ ′

1, γ
′
2, . . .):

ξ ≤ ξ ′ ⇐⇒ ∀n ≥ 1 γ1 · · · · · γn ≤ γ ′
1 · · · · · γ ′

n . (5)

Proposition 3.1 ([2]) The relation defined in (5)makes (M,≤) a partial order, which
extends (M,≤) and has the following properties:

1. (M,≤) is complete with respect to:
(a) Least upper bounds (lub) of non-decreasing sequences: for every sequence (xn)n≥1

such that xn ∈ M and xn ≤ xn+1 for all integers n ≥ 1, the lub
∨

n≥1 xn exists

inM.
(b) Greatest lower bounds of arbitrary subsets.
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2. For every heap ξ ∈ M, either finite or infinite, the following subset:

L(ξ) = {x ∈ M : x ≤ ξ}, (6)

is a complete lattice with 0 and ξ as minimal and maximal elements.
3. (Finiteness property of elements ofM in the sense of [11]) For every finite heap

x ∈ M, and for every non-decreasing sequence (xn)n≥0 of heaps, holds:

∨

n≥0

xn ≥ x �⇒ ∃n ≥ 0 xn ≥ x .

4. The elements of M form a basis of M in the sense of [11]: for all ξ, ξ ′ ∈ M
holds:

ξ ≥ ξ ′ ⇐⇒ (∀x ∈ M ξ ′ ≥ x �⇒ ξ ≥ x).

3.5 Visual Cylinders and Bernoulli Measures

For x ∈ M a heap, the visual cylinder of base x is the following non-empty subset
of ∂M:

↑ x = {ξ ∈ ∂M : x ≤ ξ}.
We equip the boundary ∂M with the σ -algebra:

F = σ 〈 ↑ x, x ∈ M〉,

generated by the countable collection of visual cylinders. From now on, when referring
to the boundary, we shall always mean the measurable space (∂M,F).

We say that a probability measure P on the boundary is a Bernoulli measure when-
ever it satisfies:

∀x, y ∈ M P
( ↑ (x · y)) = P(↑ x) · P(↑ y). (7)

We shall furthermore impose the following condition:

∀x ∈ M P(↑ x) > 0. (8)

If P is a Bernoulli measure on the boundary, the positive function f : M → R

defined by:
∀x ∈ M f (x) = P(↑ x),

is called the valuation associated to P. By definition of Bernoulli measures, f is
multiplicative: f (x · y) = f (x) · f (y). In particular, the values of f onM are entirely
determined by the finite collection (pa)a∈� of characteristic numbers of P defined
by the value of f on single pieces:

∀a ∈ � pa = f (a). (9)
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The condition (8) is equivalent to impose pa > 0 for all a ∈ �.
For any heap x ∈ M,P(↑ x) corresponds to the probability of seeing x at bottomof

a random infinite heapwith lawP. By definition of Bernoulli measures, this probability
is equal to the product pa1 × · · · × pan , where the word a1 . . . an is any representative
word of the heap x .

3.6 Interpretation of the Introductory Probabilistic Protocol

The definition of Bernoulli measures already allows us to interpret the probabilistic
protocol introduced in § 2 by means of a Bernoulli measure P on the boundary of
a heap monoid. Obviously, the heap monoid to consider coincides with our running
example T = 〈a, b, c | ab = ba〉 on three generators. Let us check that the measure
P defined by the law of infinite heaps generated by the described protocol is indeed
Bernoulli.

Any heap x ∈ T can be uniquely described under the form:

x = (ar1 · bs1) · c · · · · · (ark · bsk ) · c · ark+1 · bsk+1 ,

for some integers k, r1, s1, . . . , rk+1, sk+1 ≥ 0. For such a heap x , referring to the
description of the probabilistic protocol, the associated visual cylinder ↑ x is described
by:

↑ x =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Round 1: Na = r1, Nb = s1
...

Round k: Na = rk, Nb = sk
Round k+1: Na ≥ rk+1, Nb ≥ sk+1

and is given probability:

P(↑ x) = (λλ′)k(1 − λ)r1+···+rk (1 − λ′)s1+···+sk (1 − λ)rk+1(1 − λ′)sk+1 .

If f : M → R is the multiplicative function defined by:

f (a) = 1 − λ, f (b) = 1 − λ′, f (c) = λλ′, (10)

it is thus apparent that P(↑ x) = f (x) holds for all x ∈ M. Since P(↑ x) is
multiplicative, the measure P is Bernoulli.

In passing, we notice that, whatever the choices of λ, λ′ ∈ (0, 1), the equation:

1 − f (a) − f (b) − f (c) + f (a) f (b) = 0

is satisfied, as one shall expect from (14)–(a) below.
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3.7 Compatible Heaps

In the sequel, we shall often use the following facts. We say that two heaps x, y ∈ M
are compatible if there exists z ∈ M such that x ≤ z and y ≤ z. It follows in particular
from Proposition 3.1 that the following propositions are equivalent:

(i) x, y ∈ M are compatible;
(ii) ↑ x ∩ ↑ y �= ∅;
(iii) the lub x ∨ y exists in M.

In this case, we also have:

↑ x ∩ ↑ y =↑ (x ∨ y).

If P is a Bernoulli probability measure on ∂M, and if x and y are two compatible
heaps, then it is immediate to obtain, by multiplicativity of P :

P
( ↑ x | ↑ y

) = P
( ↑ ((x ∨ y) − y)

) = P
( ↑ (x − (x ∧ y))

)
. (11)

3.8 Möbius Transform and Markov Chain of Cliques

Call valuation any positive and multiplicative function f : M → R; the valuations
induced by Bernoulli measures are particular examples of valuations. Any valuation
is characterized by its values on single pieces, as in (9).

If f : M → R is any valuation, then the Möbius transform of f is the function
h : C → R defined by [17,20]:

∀γ ∈ C h(γ ) =
∑

γ ′∈C : γ ′≥γ

(−1)|γ ′|−|γ | f (γ ′). (12)

It is proved in [2] that, for a given valuation f : M → R, there exists a Bernoulli
measure on the boundary that induces f if and only if its Möbius transform h satisfies
the following two conditions:

(a) h(0) = 0 ; (b) ∀γ ∈ C h(γ ) > 0. (13)

Note that Condition (a) is a polynomial condition in the characteristic numbers, and
Condition (b) corresponds to a finite series of polynomial inequalities. For instance,
for the heap monoid T on three generators T = 〈a, b, c : ab = ba〉, we obtain:

(a) 1 − pa − pb − pc + pa pb = 0, (b)

⎧
⎪⎪⎨

⎪⎪⎩

h(a) > 0 ⇐⇒ pa(1 − pb) > 0
h(b) > 0 ⇐⇒ pb(1 − pa) > 0
h(c) > 0 ⇐⇒ pc > 0

h(ab) > 0 ⇐⇒ pa pb > 0
(14)
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Returning to the study of a general heap monoid, and when considering the case
where all coefficients pa are equal, say to p, then both conditions in (13) reduce to
the following: p is the (known to be unique [8,12,14]) root of smallest modulus of
theMöbius polynomial of the heap monoid M, defined by:

μM(X) =
∑

c∈C
(−1)|c|X |c|.

The associated Bernoulli measure is then called the uniformmeasure on the boundary.
For the running example T , one has μT (X) = 1 − 3X + X2, and the uniform

measure is given by P(↑ x) = p|x | with p = (3 − √
5)/2.

In the remaining of this subsection, we characterize the process of cliques that
compose a random infinite heap under a Bernoulli measure.

For each integer n ≥ 1, the mapping which associates to an infinite heap ξ the
nth clique γn such that ξ = (γ1, γ2, . . .) is measurable, and defines thus a random
variable Cn : ∂M → C. Furthermore, the sequence (Cn)n≥1 is a time homogeneous
and ergodic Markov chain [2], of which:

1. The initial distribution is the restriction h
∣∣
C, where h is the Möbius transform

defined in (12).
2. For each non-empty clique γ ∈ C, put:

g(γ ) =
∑

γ ′∈C : γ→γ ′
h(γ ′). (15)

Then the transition matrix P = (Pγ,γ ′)(γ,γ ′)∈C of the chain is given by:

Pγ,γ ′ =
{
0, if (γ → γ ′) does not hold,

h(γ ′)/g(γ ), if (γ → γ ′) holds.
(16)

In general, the initial measure h
∣∣
C does not coincide with the stationary measure

of the chain of cliques.

4 Asynchronous Stopping Times and the Strong Bernoulli Property

In this section, we introduce asynchronous stopping times and their associated shift
operators. They will be our basic tools to formulate and prove the law of large numbers
in the subsequent sections.

4.1 Definition and Examples

Intuitively, an asynchronous stopping time is a way to select sub-heaps from infinite
heaps, such that for each infinite heap one can decide at each “time instant”whether the
sub-heap in question has already been reached or not. The formal definition follows.
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Definition 4.1 An asynchronous stopping time, or AST for short, is a mapping V :
∂M → M, which we sometimes denote by ξ �→ ξV , such that:

1. ξV ≤ ξ for all ξ ∈ ∂M;
2. ∀ξ, ξ ′ ∈ ∂M (|ξV | < ∞ ∧ ξV ≤ ξ ′) �⇒ ξ ′

V = ξV .

We say that V is P-a.s. finite whenever ξV ∈ M for P-a.s. every ξ ∈ ∂M.

In the abovedefinition,we thinkof ξV as “ξ cut atV ”.V = 0 is afirst, trivial example
of AST . Actually, the property 2 of the above definition implies that if ξV = 0 for
some ξ ∈ ∂M, then V = 0 on ∂M. Another simple example is the following. Let
x ∈ M be a fixed heap. Define Vx : ∂M → M by:

Vx (ξ) =
{
x, if x ≤ ξ,

ξ, otherwise.

Then, it is easy to see that Vx is an AST . We recover the previous example by setting
x = 0.

Consider the sequence of random cliques (Ck)k≥1 associated with infinite heaps ξ ,
and define for each integer k ≥ 1 the random heap Yk = C1 · · · · · Ck . Then, by
construction, Yk ≤ ξ holds; however, the mapping Yk is not an AST , except if M is
the free monoid, which corresponds to the empty independence relation I on �.

We will frequently use the following remark, which is a direct consequence of the
definition: let V : ∂M → M be an AST , and let V be the set of finite values assumed
by V . Then holds:

∀x ∈ V {V = x} =↑ x .

The following proposition provides less trivial examples of AST that we will use
throughout the rest of the paper. Let us first introduce a new notation. If a ∈ � is a
piece, and x ∈ M is a heap, the number of occurrences of a in a representative word
of x does not depend on the representative word and is thus attached to the heap x .
We denote it by |x |a .
Proposition 4.2 The two mappings ∂M → M, ξ �→ ξV described below define
asynchronous stopping times:

1. For ξ = (γ1, γ2, . . .), let Rξ = {k ≥ 1 : γk is maximal in C }, and put:

ξV =
{

γ1 · · · · · γn with n = min Rξ , if Rξ �= ∅,

ξ, otherwise.
(17)

2. Let a ∈ � be some fixed piece. For ξ ∈ ∂M, let L(ξ) be the complete lattice
defined in (6). Then put:

ξV =
∧

Ha(ξ), Ha(ξ) = {x ∈ L(ξ) ∩ M : |x |a > 0}, (18)
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where the greatest lower bound defining ξV is taken in L(ξ). It is called the first
hitting time of a.

It Ha(ξ) �= ∅, then ξV ∈ Ha(ξ).

For the first hitting time of a, since the greatest lower bound in (18) is taken in the
complete lattice L(ξ), if Ha(ξ) = ∅ then ξV = max L(ξ) = ξ .

Proof 1. The condition ξV ≤ ξ is obvious on (17). Hence, let ξ, ξ ′ ∈ ∂M such that
ξV ∈ M and ξV ≤ ξ ′.We need to show that ξ ′

V = ξV . For this, let ξ = (γ1, γ2, . . .)

and ξ ′ = (γ ′
1, γ

′
2, . . .), and let n = min Rξ and u = γ1 · · · · · γn . By hypothesis,

we have u ≤ ξ ′ and thus u ≤ γ ′
1 · · · · · γ ′

n , by (5).
It follows from [2, Lemma 8.1] that the sequences (γi )1≤i≤n and (γ ′

i )1≤i≤n are
related as follows: for each integer i ∈ {1, . . . , n}, there exists a clique δi such
that δi ∧ γi = 0, . . . , δi ∧ γn = 0, and γ ′

i = γi · δi . But γn is maximal, therefore,
δi = 0 for all i ∈ {1, . . . , n}, and thus γ ′

i = γi . From γ ′
n = γn follows at once

that min Rξ ′ ≤ n. And since γ ′
i = γi for all i < n, no clique γ ′

i is maximal in C ,
otherwise it would contradict the definition of ξV . Hence, finally min Rξ ′ = n,
from which follows ξ ′

V = γ ′
1 · · · · · γ ′

n = γ1 · · · · · γn = ξV .
2. Again, it is obvious on (18) that ξV ≤ ξ . Let ξ, ξ ′ ∈ ∂M be such that ξV ∈ M and

ξV ≤ ξ ′. Then Ha(ξ) �= ∅, and we observe that Ha(ξ) actually has a minimum,
ξV = min Ha(ξ). This is best seenwith the resource interpretation of heapmonoids
introduced in [7].
It follows that ξV ∈ Ha(ξ

′) and thus Ha(ξ
′) �= ∅. Henceforth, as above, we deduce

ξ ′
V = min Ha(ξ

′), and ξ ′
V ≤ ξV . It follows that ξ ′

V ∈ Ha(ξ) and thus ξV ≤ ξ ′
V and

finally ξV = ξ ′
V . ��

4.2 Action of the Monoid on its Boundary and Shift Operators

In order to define the shift operator associated with an AST , we first describe the
natural left action of a heap monoid on its boundary.

For x ∈ M and ξ ∈ ∂M an infinite heap, the visually intuitive operation of piling
up ξ upon x should yield an infinite heap. However, some pieces in the first layers of
ξ might fall off and fill up empty slots in x . Hence, the CF decomposition of x · ξ

cannot be defined as the mere concatenation of the CF decompositions of x and ξ .
The proper definition of the concatenation x · ξ is as follows. Let ξ = (γ1, γ2, . . .).

The sequence of heaps (x · γ1 · · · · · γn)n≥1 is obviously non-decreasing. According
to point a1 of Proposition 3.1, we may thus consider:

x · ξ =
∨

n≥1

(x · γ1 · · · · · γn), which exists in ∂M,

and then we have:

∀x, y ∈ M ∀ξ ∈ ∂M x · (y · ξ) = (x · y) · ξ.
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It is then routine to check that, for each x ∈ M, the mapping:


x : ∂M → ↑ x, ξ �→ x · ξ,

is a bijection. Therefore, we extend the notation y − x , licit for x, y ∈ M with x ≤ y,
by allowing y to range over ∂M, as follows:

∀x ∈ M ∀ξ ∈↑ x ξ − x = 
−1
x (ξ).

Hence, ζ = ξ − x denotes the tail of ξ “after” x , for ξ ≥ x . It is characterized by
the property x · ζ = ξ , and this allows us to introduce the following definition.

Definition 4.3 Let V : ∂M → M be an AST . The shift operator associated to V is
the mapping θV : ∂M → ∂M, which is partially defined by:

∀ξ ∈ ∂M ξV ∈ M �⇒ θV (ξ) = ξ − ξV .

The domain of definition of θV is {|ξV | < ∞}.

4.3 The Strong Bernoulli Property

The strong Bernoulli property has with respect to the definition of Bernoulli mea-
sures, the same relationship than the strong Markov property with respect to the mere
definition of Markov chains. Its formulation is also similar (see for instance [16]). In
particular, it involves a σ -algebra associated with an AST , defined as follows.

Definition 4.4 Let V : ∂M → M be an AST , and let V be the collection of finite
values assumed by V . We define the σ -algebra FV as

FV = σ 〈 ↑ x : x ∈ V〉.

With the above definition, we have the following result.

Theorem 4.5 (Strong Bernoulli Property) Let P be a Bernoulli measure on ∂M, let
V : ∂M → M be an AST and let ψ : ∂M → R be a F-measurable function, either
non-negative or P-integrable. Extend ψ ◦ θV , which is only defined on {|ξV | < ∞},
by ψ ◦ θV = 0 on {|ξV | = ∞}. Then:

E(ψ ◦ θV |FV ) = E(ψ), P-a.s. on |ξV | < ∞, (19)

denoting by E(·) the expectation with respect to P, and by E(·|FV ) the conditional
expectation with respect to P and to the σ -algebra FV .

If V : ∂M → M is P-a.s. finite, then the strong Bernoulli property writes as:

P-a.s. E(ψ ◦ θV |FV ) = E(ψ).
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In the general case, wemay still have an equality valid P-almost surely bymultiply-
ing both members of (19) by the characteristic function 1{V∈M} = 1{|ξV |<∞}, which
is FV -measurable, as follows:

P-a.s. E(1{V∈M}ψ ◦ θV |FV ) = 1{V∈M}E(ψ). (20)

Proof By the standard approximation technique for measurable functions, it is enough
to show the result for ψ of the form ψ = 1↑y for some heap y ∈ M. For such a
function ψ , let Z = E(ψ ◦ θV |FV ).

LetV be the set of finite values assumed by V .We note that the visual cylinders ↑ x ,
for x ranging over V , are pairwise disjoint since V (ξ) = x on ↑ x for x ∈ V . Hence
FV is atomic. Therefore, if Ẑ : V → R denotes the function defined by:

∀x ∈ V Ẑ(x) = E(ψ ◦ θV |V = x),

then a version of Z is given by:

Z(ξ) =
{
0, if V (ξ) = ξ,

Ẑ(x), if V (ξ) = x with x ∈ M.

For x ∈ V and for ξ ≥ x , one has

ψ ◦ θV (ξ) = ψ(ξ − x) = 1↑y(ξ − x) = 1↑(x ·y)(ξ).

And since {V = x} =↑ x for x ∈ V , this yields:

Ẑ(x) = E(ψ ◦ θV | ↑ x) = 1

P(↑ x)
P(↑ (x · y)) = P(↑ y) = Eψ,

by the multiplicativity property of P. The proof is complete. ��

5 Iterating Asynchronous Stopping Times

This section studies the iteration of asynchronous stopping times, defined in a very sim-
ilar way as the iteration of classical stopping times for standard probabilistic processes;
see for instance [16]. Properly dealing with iterated AST is a typical example of use
of the strong Bernoulli property, as in Proposition 5.3 below.

5.1 Iterated Stopping Times

Proposition 5.1 Let V : ∂M → M be an AST. Let V0 = 0, and define the mappings
Vn : ∂M → M by induction as follows:

∀ξ ∈ ∂M Vn+1(ξ) =
{

ξ, if Vn(ξ) ∈ ∂M
Vn(ξ) · V (

ξ − Vn(ξ)
)
, if Vn(ξ) ∈ M

Then (Vn)n≥0 is a sequence of AST.
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Proof The proof is by induction on the integer n ≥ 0.
The case n = 0 is trivial. Hence, for n ≥ 1, and assuming that Vn−1 is an AST , let

ξ, ξ ′ ∈ ∂M be such that:

Vn(ξ) ∈ M, Vn(ξ) ≤ ξ ′.

It implies in particular that Vn−1(ξ) ∈ M and Vn−1(ξ) ≤ ξ ′, fromwhich follows by
the induction hypothesis that Vn−1(ξ

′) = Vn−1(ξ). Putting x = Vn−1(ξ) = Vn−1(ξ
′)

on the one hand, there are thus two infinite heaps ζ and ζ ′ such that ξ = x · ζ and
ξ ′ = x ·ζ ′. Putting y = V (ξ −Vn−1(ξ)) on the other hand, the assumption Vn(ξ) ≤ ξ ′
writes as: x · y ≤ x · ζ ′, which implies y ≤ ζ ′ by cancellativity of the monoid. But
since V is an AST , this implies in turn V (ζ ′) = y, and finally, by definition of Vn :

Vn(ξ
′) = Vn−1(ξ

′) · V (ξ ′ − Vn−1(ξ
′)) = x · V (ζ ′) = x · y = Vn(ξ).

This shows that Vn is an AST , completing the induction. ��
Definition 5.2 Let V : ∂M → M be an AST . The sequence (Vn)n≥0 of AST defined
as inProposition 5.3 is called the iterated sequence of stopping times associatedwithV .

Proposition 5.3 Let P be a Bernoulli measure equipping the boundary ∂M. Let
(Vn)n≥0 be the iterated sequence of stopping times associated with an AST V :
∂M → M which we assume to be P-a.s. finite. Let also (�n)n≥1 be the sequence of
increments:

∀n ≥ 0 �n+1 = V ◦ θVn , Vn+1 = Vn · �n+1.

Then, (�n)n≥1 is an i.i.d. sequence of random variables with values in M, with the
same distribution as V .

Proof We first show that Vn ∈ M for all integers n ≥ 1 and P-almost surely. For this,
we apply the strong Bernoulli property (Theorem 4.5) with AST Vn−1 and with the
function ψ = 1{V∈M} to get:

P-a.s. E
(
1{Vn−1∈M}ψ ◦ θVn−1 |FVn−1) = 1{Vn−1∈M}Eψ.

But 1{Vn∈M} = 1{Vn−1∈M}ψ ◦ θVn−1 , and Eψ = P(V ∈ M) = 1 by hypothesis.
Hence, the equation above writes as:

P-a.s. E(1{Vn∈M}|FVn−1) = 1{Vn−1∈M}.

Taking the expectations of both members yields: P(Vn ∈ M) = P(Vn−1 ∈ M).
Hence by induction, since P(V0 ∈ M) = 1, we deduce that P(Vn ∈ M) = 1 for all
integers n ≥ 1.

123



J Theor Probab

To complete the proof of the proposition, we show that for any non-negative func-
tions ϕ1, . . . , ϕn : M → R, holds:

E
(
ϕ1(�1) · · · · · ϕn(�n)

) = Eϕ1(V ) · · · · · Eϕn(V ). (21)

The case n = 0 is trivial. Assume the hypothesis true at rank n−1 ≥ 0.Applying the
strong Bernoulli property (Theorem 4.5) with the AST Vn−1 yields, since Vn−1 ∈ M
P-almost surely:

P-a.s. E
(
ϕn(�n)|FVn−1

) = Eϕn(V ). (22)

Let A be the left-hand member of (21). Since �1, . . . ,�n−1 are FVn -measurable,
we compute as follows, using the standard properties of conditional expectation [3]:

A = E
(
E(ϕ1(�1) · · · · · ϕn(�n)|FVn−1)

)

= E
(
ϕ1(�1) · · · · · ϕn−1(�n−1) · E(ϕn(�n)|FVn−1)

)

= E(ϕ1(�1) · · · · · ϕn−1(�n−1)
) · Eϕn(V ) by (22)

= Eϕ1(V ) · · · · · Eϕn(V ),

the later equality by the induction hypothesis. This proves (21). ��

5.2 Exhaustive Asynchronous Stopping Times

Lemma 5.4 Let V be an AST, that we assume to be P-a.s. finite. Let (Vn)n≥0 be the
associated sequence of iterated stopping times. Then the two following properties are
equivalent:

(i) F = ∨
n≥0 FVn .

(ii) ξ = ∨
n≥0 Vn(ξ) for P-a.s. every ξ ∈ ∂M.

Proof (i) implies (ii). By theMartingale convergence theorem [3, Th. 35.6], we have
for every x ∈ M:

P-a.s. lim
n→∞E(1↑x |FVn ) = 1↑x . (23)

Let n ≥ 0 be an integer, and let Vn denote the set of finite heaps assumed by Vn .
Then, by the AST property of Vn , we have {Vn = y} =↑ y for every y ∈ Vn , and
thus, for every x ∈ M compatible with y :

P(↑ x |Vn = y) = P(↑ x | ↑ y) = P
( ↑ (x − (x ∧ y))

)
by (11)

Therefore, by (23), we obtain for every x ∈ M and for P-a.s. every ξ ∈↑ x :

lim
n→∞P(↑ (x − (x ∧ ξVn )) = 1.
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It implies that the sequence x ∧ ξVn , which is eventually constant since it is non-
decreasing and bounded by x , eventually reaches x , since the only heap y ∈ M
satisfying P(↑ y) = 1 is y = 0. In other words, x ≤ ξVn for n large enough. Hence,∨

n≥0 ξVn ≥ x for every x ∈ M and for P-a.s. every ξ ∈↑ x . In view of the basis
property of M (point 4 of Proposition 3.1), it follows that

∨
n≥0 ξVn = ξ holds P-

almost surely.
(ii) implies (i). Let F′ be the σ -algebra:

F′ =
∨

n≥1

FVn .

To show that F = F′, it is enough to show that ↑ x ∈ F′ for every x ∈ M. But for
x ∈ M, by assumption

∨
n≥1 Vn(ξ) ≥ x for P-a.s. every ξ ∈↑ x . By the finiteness

property of elements of M (point 3 of Proposition 3.1), it implies, for P-a.s. every
ξ ∈↑ x , the existence of an integer n ≥ 0 such that Vn(ξ) ≥ x . Letting V denote the
set of finite values assumed by any of the Vn , we have thus:

↑ x =
⋃

v∈V : v≥x

↑ v.

Since V is at most countable, it implies ↑ x ∈ F′, which was to be shown. ��

Definition 5.5 A P-a.s. finite AST that satisfies any of the properties (i)–(ii) of
Lemma 5.4 is said to be exhaustive.

5.3 Examples of Exhaustive Asynchronous Stopping Times

Proposition 5.6 Both examples V of AST defined in Proposition 4.2 are exhaustive
and satisfy furthermore E|V | < ∞.

Proof For both examples, that |V | < ∞ P-a.s. and also that E|V | < ∞, follow from
the two following facts:

1. The Markov chain of cliques (Ck)k≥1 such that ξ = (C1,C2, . . .) is irreducible
with a finite number of states (see § 3.8), and thus is positive recurrent.

2. If α denotes the maximal size of a clique, then |C1 · · · · · Ck | ≤ αk.

We now show that both examples are exhaustive. Let (Vn)n≥0 be the associated
sequence of iterated stopping times.

For V defined in point 1 of Proposition 4.2. Since V < ∞ P-a.s., it follows from
Proposition 5.3 that Vn < ∞ P-a.s. and for all integers n ≥ 0. Let ξ = (γn)n≥1
be an infinite heap. Let n ≥ 0 be an integer, and let c1 → . . . → ckn be the CF
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decomposition of Vn(ξ). Then, on the one hand, kn ≥ n, and on the other hand, since
ckn is maximal and since ξ ≥ Vn(ξ), it must hold:

γ1 = c1, γ2 = c2, . . . γkn = ckn .

Hence, if ξ ′ = (γ ′
n)n≥1 denotes:

ξ ′ =
∨

n≥0

Vn(ξ),

one has γ ′
i = γi for all i ≤ kn and for all n ≥ 0. And since kn ≥ n, it implies γi = γ ′

i
for all integers i ≥ 1, and thus ξ ′ = ξ . This proves that V is exhaustive.

For V defined in point 2 of Proposition 4.2. Let V be the first hitting time of
a ∈ �. With the same notations as above, let us first show the following claim:

(♦) For every b ∈ �: P(V ≥ b) > 0.
(♦♦) For every b ∈ �, and P-almost surely: ξ ≥ b �⇒ ξ ′ ≥ b.

Proof of (♦). Since the dependence relation D = (� × �)\I is assumed to
make the graph (�, D) connected, we pick a sequence a1, . . . , a j of pairwise distinct
pieces such that a1 = b, a j = a and (ai , ai+1) ∈ D for all i ∈ {1, . . . , j − 1}.
Put x = a1 · · · · · a j . Then, it is clear that V (ξ) = x for every ξ ≥ x . Hence
P(V = x) = P(↑ x) > 0. Since b ≤ x , it follows that P(V ≥ b) ≥ P(↑ x) > 0.

Proof of (♦♦). Let (�n)n≥1 be the sequence of increments, such that Vn+1 =
Vn ·�n+1. Then (�n)n≥1 being i.i.d.with the same lawasV according toProposition 5.3,
and since P(V ≥ b) > 0, it follows that there exists at least an integer n ≥ 1 such that
�n ≥ b, for P-a.s. every ξ ∈ ∂M. For P-a.s. every ξ ≥ b, let n be the smallest such
integer. Then, the heap �1 · · · · · �n−1 does not contain any occurrence of b on the
one hand and is compatible with b on the other hand. That implies that b commutes
with all pieces of �1 · · · · · �n−1. Therefore, it follows that b ≤ �1 · · · · · �n ≤ ξ ′.
The claim (♦♦) is proved.

Now, to prove that V is exhaustive, let x ∈ M be a heap. We show that, P-a.s.,
ξ ≥ x �⇒ ξ ′ ≥ x , which will complete the proof via the basis property ofM (point
4 of Proposition 3.1). Putting y = ξ ′ ∧ x , and assuming ξ ≥ x , we prove that y = x
holds P-almost surely. Assume y �= x . Since y ≤ x , there is thus a piece b ∈ � such
that y · b ≤ x holds and (ξ ′ − y) ≥ b does not hold. Let N be the smallest integer
such that VN (ξ) ∧ x = y ; such an integer exists, by the finiteness property of ∂M
(point 3 of Proposition 3.1). Let z = VN (ξ). Then, it follows from the definition of
the sequence (Vn)n≥0 that holds:

∀n ≥ N Vn(ξ) = z · VN−n(ξ − z).

According to the property (♦♦), for P-a.s. every ξ such that ξ − z ≥ b, there exists
an integer k ≥ 0 such that Vk(ξ − z) ≥ b. But then, VN+k(ξ) ≥ y · b, and thus
ξ ′ ∧ x ≥ y · b, contradicting the definition of y. It follows that y �= x can only occur
with probability 0, which was to be proved. ��

123



J Theor Probab

6 The Cut-Invariant Law of Large Numbers

6.1 Statement of the Law of Large Numbers

We first define ergodic sums and ergodic means associated with an AST and with a
cost function. The setting of the section is that of a heap monoid M = M(�, I )
together with a Bernoulli measure P on (∂M,F).

If ϕ : � → R is a function, seen as a cost function, it is clear that ϕ has a unique
extension on M which is additive; we denote this extension by 〈ϕ, ·〉. Hence, if the
�-word x1 . . . xn is a representative of a heap x , then:

〈ϕ, x〉 = ϕ(x1) + · · · + ϕ(xn).

In particular, if 1 denotes the constant function, equal to 1 on�, one has: 〈1, x〉 = |x |
for every x ∈ M.

Definition 6.1 Let V : ∂M → M be an AST , which we assume to be P-a.s. finite,
and let ϕ : � → R be a cost function. Consider the sequence of iterated stopping
times (Vn)n≥0 associated with V . The ergodic sums associated with V are the random
variables in the sequence (SV,nϕ)n≥0 defined P-a.s. by:

∀n ≥ 0 SV,nϕ = 〈ϕ, ξVn 〉.

The ergodic means associated with V are the random variables in the sequence
(MV,n)n≥1 defined P-a.s. by:

∀n ≥ 0 MV,nϕ = SV,nϕ

SV,n1
= 〈ϕ, ξVn 〉

|ξVn |
.

Theorem 6.2 LetM(�, I ) be a heap monoid, equipped with a Bernoulli measure P
on (∂M,F) and with a cost function ϕ : � → R.

Then, for every exhaustive asynchronous stopping time V : ∂M → M such that
E|V | < ∞ holds, the ergodic means (MV,nϕ)n≥1 converge P-a.s. toward a constant.
Furthermore, this constant does not depend on the choice of the exhaustive AST V
such that E|V | < ∞.

Before we proceed with the proof of Theorem 6.2, we state a corollary which
provides a practical way of computing the limit of ergodic means.

Corollary 6.3 Let ϕ : � → R be a cost function. Let π be the invariant measure of
the Markov chain of cliques associated with a Bernoulli measure P on ∂M. Then the
limit Mϕ of the ergodic means MV,nϕ, for any exhaustive AST V such that E|V | < ∞
holds, is given by:

Mϕ =
(∑

γ∈C
π(γ )|γ |

)−1 ∑

γ∈C
π(γ )〈ϕ, γ 〉. (24)
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Proof According to Theorem 6.2, to compute the value Mϕ, we may choose any AST
of finite length in average. According to Proposition 4.2, the AST V : ∂M → M
defined in point 1 of Proposition 4.2 is eligible. Let (Vn)n≥1 be the associated sequence
of iterated stopping times. Then Vn = C1 ·· · ··CKn for some integer Kn by construction
of V , where (Ck)k≥1 is the Markov chain of cliques associated with infinite heaps.
Furthermore, limn→∞ Kn = ∞ holds since V is exhaustive. But then the ergodic
means are given by:

MV,nϕ = Kn

|C1| + · · · + |CKn |
· ϕ(C1) + · · · + ϕ(CKn )

Kn
.

The equality (24) follows then from the law of large numbers [6] for the ergodic
Markov chain (Ck)k≥1. ��

6.2 Direct Computation for the Introductory Probabilistic Protocol

We have computed in Sect. 2 the asymptotic density of pieces for the heap monoid
T = 〈a, b, c | ab = ba〉 by computing ergodic means associated either with the first
hitting time of c or with the first hitting time of a. The fact that the results coincide can
be seen as an instance ofTheorem6.2.Corollary 6.3 provides a directwayof computing
the limit density vector, without having to describe an infinite set of heaps as we did
in Sect. 2, which would become much less tractable for a general heap monoid. Let
us check that we recover the same values for the density vector γ = (

γa γb γc
)
.

We have already obtained in (10) the values of the characteristic numbers of the
associated Bernoulli measure: f (a) = 1 − λ, f (b) = 1 − λ′, f (c) = λλ′. Let us
use the short notations a, b, c for f (a), f (b), f (c). The Möbius transform is then the
following vector, indexed by cliques a, b, c, ab in this order:

h = (
a(1 − b) b(1 − a) c ab

)

Using the equality 1 − a − b − c + ab = 0, and according to the results recalled
in Sect. 3.8, the transition matrix of the chain of cliques is given by:

P =

⎛

⎜⎜
⎝

a 0 c
1−b 0

0 b c
1−a 0

a(1 − b) b(1 − a) c ab
a(1 − b) b(1 − a) c ab

⎞

⎟⎟
⎠

=

⎛

⎜⎜
⎝

1 − λ 0 λ 0
0 1 − λ′ λ′ 0

λ′(1 − λ) λ(1 − λ′) λλ′ (1 − λ)(1 − λ′)
λ′(1 − λ) λ(1 − λ′) λλ′ (1 − λ)(1 − λ′)

⎞

⎟⎟
⎠
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Direct computations give the left invariant probability vector π of P:

⎛

⎜⎜
⎝

πa

πb

πc

πab

⎞

⎟⎟
⎠ = 1

λ2 + λ′2 − λλ′(λ + λ′ − 1)

⎛

⎜⎜
⎝

(1 − λ)λ′2
(1 − λ′)λ2

λλ′(λ + λ′ − λλ′)
λλ′(1 − λ)(1 − λ′)

⎞

⎟⎟
⎠

Using the notion of limit for ergodic means, the density vector defined in Sect. 2
is γ = (

γa γb γc
) = (

M1{a} M1{b} M1{c}
)
, which yields, according to the result of

Corollary 6.3:

⎛

⎝
γa
γb
γc

⎞

⎠ = 1

πa + πb + πc + 2πab

⎛

⎝
πa + πab

πb + πab

πc

⎞

⎠ = 1

λ + λ′ − λλ′

⎛

⎝
λ′(1 − λ)

λ(1 − λ′)
λλ′

⎞

⎠

As expected, we recover the values found in Sect. 2.

6.3 Proof of Theorem 6.2

The proof is divided into two parts, each one gathered in a subsection: first, the proof
of convergence of the ergodic means (Sect. 6.3.1); and second, the proof that the limit
does not depend on the choice of the AST V : ∂M → M, provided that E|V | < ∞
holds (Sect. 6.3.2).

6.3.1 Convergence of Ergodic Means

Using the notations introduced in Theorem 6.2, let (�n)n≥1 be the sequence of
increments associated with the sequence (Vn)n≥1. The increments are defined as in
Proposition 5.3. Then we have:

MV,nϕ = 〈ϕ,�1 · · · · · �n〉
〈1,�1 · · · · · �n〉 = n

〈1,�1〉 + · · · + 〈1,�n〉 · 〈ϕ,�1〉 + · · · + 〈ϕ,�n〉
n

Let M = max |ϕ|. Then the assumption E|ξV | < ∞ implies:

E|〈ϕ, ξV 〉| ≤ ME|ξV | < ∞.

Since (�n)n≥1 is i.i.d. according to Proposition 5.3, each �i being distributed
according to ξV , the strong law of large numbers for i.i.d. sequences implies the P-a.s.
convergence:

lim
n→∞

〈ϕ,�1〉 + · · · + 〈ϕ,�n〉
n

= E〈ϕ, ξV 〉, lim
n→∞

〈1,�1〉 + · · · + 〈1,�n〉
n

=E|ξV |.
(25)
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It follows in particular from V being exhaustive that E|ξV | > 0; otherwise, we
would have ξV = 0, P-a.s., and thus ξVn = 0, P-a.s. and for all n ≥ 0, contradicting
the P-a.s. equality

∨
n≥0 ξVn = ξ stated in Lemma 5.4. Hence, from (25), we deduce

the P-a.s. convergence:

lim
n→∞ MV,nϕ = E〈ϕ, ξV 〉

E|ξV | .

6.3.2 Uniqueness of the Limit

We start with a couple of lemmas.

Lemma 6.4 Let f : M → R be the valuation defined by f (x) = P(↑ x) for all
x ∈ M, and let B = (Bγ,γ ′)(γ,γ ′)∈C×C be the non-negative matrix defined by:

∀(γ, γ ′) ∈ C × C Bγ,γ ′ =
{
0, if ¬(γ → γ ′),
f (γ ′), if γ → γ ′.

Then B has spectral radius 1.

Proof This lemma is shown in [1], we reproduce the argument below. First, we observe
that the non-negative matrix B is primitive. Indeed, it is irreducible since the graph of
non-empty cliques (C,→) is strongly connected according to [14, Lemma 3.2]. And
it is aperiodic since c → c holds for any clique c ∈ C.

Let h : C → R be the Möbius transform defined in (12), and let g = (g(γ ))γ∈C
be the normalization vector defined in (15). The following identity is proved in [2,
Prop. 10.3] to hold for all γ ∈ C: h(γ ) = f (γ )g(γ ). It implies:

(Bg)γ =
∑

γ ′∈C : γ→γ ′
f (γ ′)g(γ ′) =

∑

γ ′∈C : γ→γ ′
h(γ ′) = g(γ ).

Hence, g is B-invariant on the right. Since h > 0 on C, the vector g is positive.
Therefore, g is a right Perron eigenvector of B which implies the statement. ��
Lemma 6.5 Let a ∈ � be a piece, and let M′

a be the sub-monoid of M consisting
of heaps with no occurrence of a. Then:

∑

x∈M′
a

P(↑ x) < ∞,
∑

x∈M′
a

|x |P(↑ x) < ∞,
∑

x∈M′
a

|x |2 P(↑ x) < ∞.

Proof Of course, it is enough to prove the last one of the three inequalities. Let ‖ · ‖
denote the spectral radius of a non-negative matrix. Let B the matrix defined as in
Lemma 6.4, and let Ba be the matrix obtained by replacing in B all entries (γ, γ ′) by
0 as long as γ or γ ′ contains an occurrence of a. Then, the non-negative matrices B
and Ba satisfy Ba ≤ B and Ba �= B. Since B is primitive, and since ‖B‖ = 1 by
Lemma 6.4, it follows from Perron–Frobenius theory [19, Chapter 1] that ‖Ba‖ < 1.
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The result follows now by decomposing heaps x ∈ M′
a according to their height

τ(x) on the one hand, and by observing the obvious estimation |x | ≤ ατ(x) for all
x ∈ M on the other hand, where α is the maximal size of cliques. Considering the
vector I = (Iγ )γ∈C with Iγ = 1 for all γ ∈ C, and its transpose I t , this yields:

∑

x∈M′
a

|x |2P(↑ x) ≤ α2 I t
(∑

k≥0

k2Bk
a

)
I < ∞

since ‖Ba‖ < 1. This completes the proof. ��
Lemma 6.6 Let a ∈ � be a piece. Let V be the first hitting time of a, and let (Vk)k≥0
be the associated sequence of iterated stopping times. Fix x �= 0 a heap, and let
Jx : ∂M → N ∪ {∞} be the random variable defined by:

Jx (ξ) = inf{k ≥ 0 : Vk(ξ) ≥ x}.

Then, the random variable Ux : ∂M → M defined by:

Ux (ξ) =
{
VJx (ξ)(ξ), if Jx (ξ) < ∞,

ξ, if Jx (ξ) = ∞,

is an AST, and there exists a constant C ≥ 0, independent of x, such that:

E
(
(|Ux | − |x |)2 ∣∣ ↑ x

) ≤ C. (26)

Proof The fact that Ux is an AST is an easy consequence of the Vk’s being AST
(Proposition 5.1). Since V is exhaustive by Proposition 5.6, in particular Jx (ξ) < ∞
for P-a.s. every ξ ∈↑ x . Henceforth, the conditional expectation in (26) is computed
as the following sum:

E
(
(|Ux | − |x |)2 ∣∣ ↑ x

) = 1

P
(↑ x)

∑

y∈Ux

(|y| − |x |)2P({Ux = y} ∩ ↑ x
)
,

where Ux denotes the set of finite values assumed by Ux . Since Ux is an AST , we
have for all y ∈ Ux :

{Ux = y} =↑ y,

1

P(↑ x)
P
({Ux = y} ∩ ↑ x

) = P
( ↑ (y ∨ x)

)

P(↑ x)
= P

( ↑ (y − x)
)
,

the later equality since x ≤ y and by the multiplicativity property of P. Therefore:

E
(
(|Ux | − |x |)2 ∣∣ ↑ x

) =
∑

y∈Ux

|y − x |2P( ↑ (y − x)
)

(27)
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Recall that each heap can be seen itself as a partially ordered labeled set [23], where
elements are labeled by �. Assume first that x contains a unique maximal piece, say
b ∈ �. Such a heap is called pyramidal. Then for each y ∈ Ux , the heap z = y − x
has the following shape, for some integer k ≥ 0 : z = δ1 · · · · · δk−1 · δk , where the δi ’s
for i ∈ {1, . . . , k − 1} result from the action of the hitting time V prior to Vk ≥ x . In
particular, the k − 1 first heaps δi do not have any occurrence of b ; whereas δk writes
as δk = u · a for some heap u with no occurrence of a. Denoting by M′

a and M′
b,

respectively, the sub-monoids of M of heaps with no occurrence of a and of b, we
have thus z = v · u · a, for some v ∈ M′

b and u ∈ M′
a . Hence, from (27), we deduce:

E
(
(|Ux | − |x |)2 ∣∣ ↑ x

) ≤
∑

u∈M′
a

v∈M′
b

(|u| + |v| + 1)2P(↑ u) · P(↑ v) · P(↑ a).

Since a and b range over a finite set, it follows from Lemma 6.5 that the sum above
in the right member is bounded by a constant. The result (26) follows.

We have proved the result if x is pyramidal. The general case follows since every
heap x writes as an upper bound x = x1 ∨ . . .∨ xn of at most α pyramidal heaps, with
α the maximal size of cliques. ��
Lemma 6.7 Let W be an AST such that E|W | < ∞. Let a ∈ � be a piece. Let V
be the first hitting time of a, and let (Vk)k≥0 be the associated sequence of iterated
stopping times. Let K : ∂M → N ∪ {∞} be the random integer defined by:

K (ξ) = inf{k ≥ 0 : Vk(ξ) ≥ W (ξ)}.

Then the mapping U : ∂M → M defined by:

U (ξ) =
{
VK (ξ)(ξ), if K (ξ) < ∞,

ξ, if K (ξ) = ∞

is an AST, and there is a constant C ≥ 0 such that:

E
(
(|U | − |W |)2) ≤ C.

Proof Let W denote the set of finite values assumed by W . Since E|W | < ∞, in
particular W < ∞ P-almost surely, and therefore:

E
(
(|U | − |W |)2) =

∑

w∈W
P( ↑ w)E

(
(|U | − |w|)2 ∣∣ ↑ w

)

=
∑

w∈W
P( ↑ w)E

(
(|Uw| − |w|)2 ∣

∣ ↑ w
)

with the notation Ux of Lemma 6.6

≤
∑

w∈W
P( ↑ w)C with the constant C from Lemma 6.6

≤ C
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The latter inequality follows from the fact that the visual cylinders ↑ w, forw ranging
over W , are pairwise disjoint since W takes different values on different such visual
cylinders. The proof of Lemma 6.7 is complete. ��

Finally, we will use the following elementary analytic result.

Lemma 6.8 Let (Xk)k≥1 be a sequence of real random variables defined on some
common probability space (�,F,P), and such that E|Xk |2 ≤ C < ∞ for some
constant C. Then limk→∞ Xk/k = 0 holds P-almost surely.

Proof Let Yk = Xk/k. To prove the P-a.s. limit Yk → 0, we use the following
well-known sufficient criterion:

∀ε > 0
∑

k≥1

P(|Yk | > ε) < ∞.

Applying Markov inequality yields:

∑

k≥1

P(|Yk | > ε) =
∑

k≥1

P(|Xk |2 > k2ε2) ≤ 1

ε2

∑

k≥1

C

k2
< ∞,

which shows the result. ��
We now proceed with the proof of uniqueness of the limit in Theorem 6.2. The

setting is the following. Let W be an exhaustive AST such that E|W | < ∞, let
(Wn)n≥0 be the associated sequence of iterated stopping times. By the first part of the
proof (Sect. 6.3.1), we know that the ergodic means MW,nϕ converge P-a.s. toward a
constant, say M(W, ϕ).

Pick a ∈ � a piece, and let V be the first hitting time of a. Let (Vn)n≥0 be the
associated sequence of iterated stopping times, and let M(V, ϕ) be the limit of the
associated ergodic means MV,nϕ. We shall prove that M(W, ϕ) = M(V, ϕ). This will
conclude the proof of Theorem 6.2.

We consider for each integer j ≥ 0 the following random integer K j : ∂M →
N ∪ {∞}:

K j (ξ) = inf
{
k ≥ 0 : Vk(ξ) ≥ Wj (ξ)

}
,

and the AST V ′
j : ∂M → M defined by:

V ′
j (ξ) =

{
VK j (ξ)(ξ), if K j < ∞,

ξ, if K j = ∞.

Since Wj ≤ V ′
j by construction, we put � j = V ′

j − Wj , so that V ′
j = Wj · � j .

Then, by Lemma 6.7, there is a constant C ≥ 0 such that:

∀ j ≥ 0 E|� j |2 ≤ C.
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Hence, applying Lemma 6.8 with X j = |� j |, and since |〈ϕ,� j 〉| ≤ M |� j | if
M = max{|ϕ(x)| : x ∈ �}, we have:

P-a.s. lim
j→∞

|� j |
j

= 0, P-a.s. lim
j→∞

〈ϕ,� j 〉
j

= 0. (28)

We also have, according to the result of Sect. 6.3.1:

P-a.s. lim
j→∞

|Wj |
j

= E|W | > 0, P-a.s. lim
j→∞

〈ϕ,Wj 〉
|Wj | = M(W, ϕ). (29)

The ergodic means can be compared as follows:

MV ′, jϕ − MW, jϕ = 〈ϕ,Wj 〉 + 〈ϕ,� j 〉
|Wj | + |� j | − 〈ϕ,Wj 〉

|Wj |
= 1

|Wj | + |� j | 〈ϕ,� j 〉 − |� j |
|Wj | + |� j | · 〈ϕ,Wj 〉

|Wj |

Using (28) (29), both terms in the right member above go to 0, and therefore,
M(V ′, ϕ) = M(W, ϕ).

But, since lim j→∞ K j = ∞, we clearly have M(V ′, ϕ) = M(V, ϕ), and thus
finally: M(W, ϕ) = M(V, ϕ), which was to be shown. The proof of Theorem 6.2 is
complete.

7 A Cut-Invariant Law of Large Numbers for Sub-Additive Functions

In Sect 6, we have obtained a strong law of large numbers relative to functions of the
kind 〈ϕ, ·〉 : M → R, which are additive by construction—and any additive function
onM is of this form.

Interesting asymptotic quantities, however, are not always of this form. For instance,
the ratio between the length and the height of heaps, |x |/τ(x), has been introduced in
[14,18] as a measure of the speedup in the execution of asynchronous processes.

The height function is sub-additive onM: τ(x · y) ≤ τ(x)+ τ(y). This constitutes
a motivation for extending the strong law of large numbers to sub-additive functions.
We shall return to the computation of the speedup in Sect. 7.2, after having estab-
lished a convergence result for ergodic ratios with respect to sub-additive functions
(Theorem 7.1).

7.1 Statement of the Law of Large Numbers for Sub-additive Functions

As for additive functions, we face the following issues: (1) define proper ergodic ratios
with respect to a given AST ; (2) prove the almost sure convergence of these ratios; (3)
study the uniqueness of the limit when the AST varies.

We restrict the proof of uniqueness to first hitting times only.
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Theorem 7.1 Let a heap monoidM = M(�, I ) be equipped with a Bernoulli mea-
sure P, and let ϕ : M → R be a sub-additive function, that is to say, ϕ satisfies
ϕ(x · y) ≤ ϕ(x) + ϕ(y) for all x, y ∈ M. We assume furthermore that ϕ is non-
negative onM.

Let a ∈ � be a piece of the monoid, and let (Vn)n≥0 be the sequence of iterated
stopping times associated with the first hitting time of a. Then the ratios ϕ(Vn)/|Vn|
converge P-a.s. as n → ∞, toward a constant which is independent of the chosen
piece a.

We gather into two separate subsections the proof of convergence (Sect. 7.1.1), and
the proof that the limit is independent of the chosen piece (Sect. 7.1.2).

7.1.1 Proof of Convergence

The proof is based on Kingman sub-additive Ergodic Theorem, of which we shall use
the following formulation [21]: let (�,F,P) be a probability space, let T : � → �

be a measure preserving and ergodic transformation, and let (gn)n≥1 be a sequence
of integrable real-valued functions satisfying gn+m ≤ gn + gm ◦ T n for all integers
n,m ≥ 1. Then, gn/n converge P-a.s. toward a constant g ≥ −∞.

Lemma 7.2 If V : ∂M → M is an exhaustive AST, then the shift operator θV :
∂M → ∂M which is P-a.s. defined on ∂M, is measure preserving and ergodic.

Proof To prove that θV is P-invariant, it is enough to show P(θ−1
V (↑ x)) = P(↑ x)

for all heaps x ∈ M. Let x ∈ M. The equality ξ = ξV · θV (ξ) holds P-a.s. since
V < ∞ P-almost surely. Therefore, denoting by V the set of finite values assumed
by V , one has:

P-a.s. θ−1
V (↑ x) =

⋃

v∈V
↑ (v · x).

The visual cylinders ↑ v, for v ranging over V , are pairwise disjoint, since V
assumes distinct values on each of them. Hence, passing to the probabilities and using
the Bernoulli property:

P
(
θ−1
V (↑ x)

) = P(↑ x)
∑

v∈V
P(↑ v) = P(↑ x)P(|V | < ∞) = P(↑ x).

This proves that θV is P-invariant.
We now show the ergodicity of θV . Let f : ∂M → R be a boundedmeasurable and

θV -invariant function. Since V is exhaustive, F = ∨
n≥1 FVn by Lemma 5.4. Hence,

by the Martingale convergence theorem [3, Th. 35.6]:

f = lim
n→∞E( f |FVn ) P-a.s. (30)
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Since Vn ∈ M with probability 1, the strong Bernoulli property (Theorem 4.5)
implies:

E( f ◦ θVn |FVn ) = E( f ) P-a.s.

But, since f is assumed to be θV -invariant, and noting that θVn = (θV )n by construc-
tion, the above writes as: E( f |FVn ) = E( f ), which yields f = E( f ) by (30), proving
the ergodicity of θV . ��

We now prove the following result, which is slightly strongest than the convergence
part in the statement of Theorem 7.1:

(†)For every exhaustive AST V : ∂M → M, if (Vn)n≥1 is the sequence of iterated
stopping times associated with V , the sequence ϕ(Vn)/|Vn| is P-a.s. convergent,
toward a constant.

Since, by Proposition 5.6, first hitting times are exhaustive, this statement implies
indeed the convergence statement in Theorem 7.1.

For the proof of (†), let gn = ϕ(Vn) for n ≥ 0. An easy induction shows that for
any integers n,m ≥ 0, one has:

Vn+m = Vn · (Vm ◦ θVn ), θVn = (θV )n,

and thus by sub-additivity of ϕ : gn+m ≤ gn + gm ◦ (θV )n .
The application of Kingman sub-additive Ergodic Theorem recalled above is

permitted by the measure-preserving property and the ergodicity of θV proved in
Lemma 7.2. It implies the P-a.s. convergence of gn/n = ϕ(Vn)/n toward a constant.
Since limn→∞ |Vn|/n = E|V | with probability 1 by Theorem 6.2, we deduce the
P-a.s. convergence of the ratios ϕ(Vn)/|Vn| as n → ∞ toward a constant, which
proves (†).

7.1.2 Proof of Uniqueness

To complete the proof of Theorem 7.1, it remains only to show that the limit of the
ratios ϕ(Vn)/|Vn| is independent of the AST V , that is to say, of the piece for which
V is the first hitting time. For this, we first show the following result:

(‡)Let ϕ : M → R be a sub-additive and non-negative function. Let W : ∂M → M
beanAST such thatE|W | < ∞, let (Wn)n≥0 be the associated sequence of iterated
stopping times, and let MW be the P-a.s. limit of ϕ(Wn)/|Wn|. Let also V be the
first hitting time of some piece a, let (Vn)n≥0 be the associated sequence of iterated
stopping times, and let MV be the P-a.s. limit of ϕ(Vn)/|Vn|. Then MV ≤ MW.

For the proof of (‡), we follow the same line of proof as for the uniqueness in the
proof of Theorem 6.2 (Sect. 6.3.2). Using the very same notations for V ′

n and �n , we
have V ′

n = Wn · �n , and thus:
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ϕ(V ′
n)

|V ′
n|

− ϕ(Wn)

|Wn| = ϕ(Wn · �n) − ϕ(Wn)

|Wn| + |�n|︸ ︷︷ ︸
An

− |�n|ϕ(Wn)

|Wn|(|Wn| + |�n|)︸ ︷︷ ︸
Bn

The sub-additivity of ϕ and the existence of the CF decomposition of heaps shows
that ϕ(x) ≤ C1x for all x ∈ M, and for some real constant C1. Therefore, using again
the sub-additivity of ϕ, we obtain:

An ≤ C1
|�n|

|Wn| + |�n| , and thus : lim sup
n→∞

An ≤ 0.

The ratios ϕ(Wn)/|Wn| being bounded since they have a finite limit, it is clear that
the terms Bn converge to 0. We deduce:

lim sup
n→∞

(ϕ(V ′
n)

|V ′
n|

− ϕ(Wn)

|Wn|
)

≤ 0.

But the ratios ϕ(Vn)/|Vn| also have a limit, and clearly lim ϕ(V ′
n)/|V ′

n| =
lim ϕ(Vn)/|Vn|. Hence we obtain:

lim
n→∞

ϕ(Vn)

|Vn| ≤ lim
n→∞

ϕ(Wn)

|Wn| ,

which proves (‡).
It is now clear that if both V and W are first hitting times, then MV = MW since

MV ≤ MW and MW ≤ MV by applying (‡) twice. This completes the proof of
Theorem 7.1.

7.2 Computing the Speedup

Let us define the speedup of the pair (M,P), where P is a Bernoulli measure on the
boundary ∂M of a heap monoid M, as the P-a.s. limit of the inverse of the ergodic
ratios:

P-a.s. ρ = lim
n→∞

|Vn|
τ(Vn)

,

where V is the first hitting time associated with some piece of the monoid. The greater
the speedup, the more the parallelism is exploited.

Based on generating series techniques, the authors of [14] obtain an expression for a
similar quantity for the particular case of uniform measures. With Bernoulli measure,
we obtain amore intuitive formula, easier tomanipulate for algorithmic approximation
purposes.
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Proposition 7.3 The speedup is given by:

ρ =
∑

c∈C
π(γ )|γ |, (31)

where π is the invariant measure of the Markov chain of cliques under the probability
measure P.

Proof Let W be the AST defined in point 1 of Proposition 4.2. Then W is exhaustive
and satisfies E|W | < ∞ according to Proposition 5.6. Let (Wn)n≥0 be the associated
sequence of iterated stopping times. Then, since the height τ(·) is sub-additive, it
follows from (†) in Sect. 7.1.1 that the ratios τ(Wn)/|Wn| converge P-a.s. toward a
constant, say MW . Furthermore, according to (‡) in Sect. 7.1.2, ρ−1 ≤ MW . Hence,
to complete the proof of the proposition, it is enough to show the following two points:

1. MW = (∑
γ∈Cπ(γ )|γ |)−1.

2. MW ≤ ρ−1.

Proof of point 1. For ξ ∈ ∂M an infinite heap given by ξ = (γi )i≥1, let Yn ∈ M
be defined for each integer n ≥ 0 by Yn = γ1 · · · · · γn . For each integer n ≥ 0, there
is an integer Kn such that Wn = YKn , and limn→∞ Kn = ∞. Therefore:

MW = lim
n→∞

τ(YKn )

|YKn |
. (32)

But we have τ(Y j ) = j for each integer j ≥ 1. Therefore, applying the strong law
of large numbers [6] to the ergodic Markov chain (Cn)n≥1, we get:

τ(Y j )

|Y j | = j

|Y j | = j

|C1| + · · · + |C j | → j→∞
(∑

γ∈C
π(γ )|γ |

)−1
. (33)

Point 1 results from (32) and (33).
Proof of point 2. For each integer n ≥ 0, let τn = τ(Vn). Then, the heap Yτn has

same height as Vn and has no lesser length. Therefore, the ratios satisfy:

τ(Yτn )

|Yτn |
= τ(Vn)

|Yτn |
≤ τ(Vn)

|Vn| .

Passing to the limit, we obtain MW ≤ ρ−1, completing the proof. ��
For the example monoid T = 〈a, b, c | ab = ba〉 equipped with the uniform

measure P given by P(↑ x) = p|x | with p = (3 − √
5)/2, the computation goes as

follows. Referring to the computations already performed in Sect. 6.2, the invariant
measure π is:

π = 1

2p + 1

⎛

⎜⎜
⎝

p
p

−3p+ 2
3p− 1

⎞

⎟⎟
⎠

a
b
c
ab
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According to Proposition 7.3, the speedup is:

ρ = πa + πb + πc + 2πab = 5p

2p + 1
= 5(7 − √

5)

22
≈ 1.0827 · · ·

Our method allows for robust algorithmic approximation of the speedup, through
the following steps: 1. Approximating the root of the Möbius polynomial; 2. Deter-
mining the invariant measure of the matrix (16); 3. Computing the speedup through
formula (31).
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