14/06/2007
David Baelde (LIX)
Least and greatest fixed points in linear logic

The first-order theory of MALL (multiplicative, additive linear logic) over only equalities is an interesting but weak logic since it cannot capture unbounded (infinite) behavior. Instead of accounting for unbounded behavior via the addition of the exponentials (! and ?), we add least and greatest fixed point operators and develop a proof theory for this natural setting for induction and co-induction. We show that this logic, named muMALL, satisfies the cut-elimination elimination theorem and has a complete, focused proof system. We then consider applying these results about muMALL to derive a focused proof system for an intuitionistic logic extended with induction and co-induction. The traditional approach to encoding intuitionistic logic into linear logic relies heavily on using the exponentials, which unfortunately weaken the focusing discipline. We get a better focused proof system by observing that certain fixed points satisfy the structural rules of weakening and contraction (without using exponentials). The resulting focused proof system for intuitionistic logic is closely related to the one implemented in Bedwyr, a recent model checker based on logic programming. We discuss how our proof theory might be used to build a computational system that can partially automate induction and co-induction.